Skip to main content
Log in

Antennae in the hawkmoth Manduca sexta (Lepidoptera, Sphingidae) mediate abdominal flexion in response to mechanical stimuli

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Flying insects rely on the integration of feedback signals from multiple sensory modalities. Thus, in addition to the visual input, mechanosensory information from antennae is crucial for stable flight in the hawkmoth Manduca sexta. However, the nature of compensatory reflexes mediated by mechanoreceptors on the antennae is unknown. In this study we describe an abdominal flexion response mediated by the antennal mechanosensory input during mechanical body rotations. Such reflexive abdominal motions lead to shifts in the animal’s center of mass, and therefore changes in flight trajectory. Moths respond with abdominal flexion both to visual and mechanical rotations, but the mechanical response depends on the presence of the mass of the flagellum. In addition, the mechanically mediated flexion response is about 200° out of phase with the visual response and adds linearly to it. Phase-shifting feedback signals in such a manner can lead to a more stable behavioral output response when the animal is faced with turbulent perturbations to the flight path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arbas E (1986) Control of hindlimb posture by wind-sensitive hairs and antennae during locust flight. J Comp Physiol A 159(6):849–857

    Article  CAS  PubMed  Google Scholar 

  • Autrum H (1958) Electrophysiological analysis of the visual systems in insects. Exp Cell Res 14(Suppl 5):426–439

    CAS  PubMed  Google Scholar 

  • Baader A (1988) Some motor neurones of the abdominal longitudinal muscles of grasshoppers and their role in steering behaviour. J Exp Biol 134:455–462

    Google Scholar 

  • Baader A (1990) The posture of the abdomen during locust flight: regulation by steering and ventilatory interneurones. J Exp Biol 151:109–131

    Google Scholar 

  • Budick SA, Reiser MB, Dickinson MH (2007) The role of visual and mechanosensory cues in structuring forward flight in Drosophila melanogaster. J Exp Biol 210(23):4092–4103

    Article  PubMed  Google Scholar 

  • Burkhardt D, Schneider G (1957) Die Antennen von Calliphora als Anzeiger der Fluggeschwindigkeit. Z Naturf 12b:139–143

    Google Scholar 

  • Burrows M (1996) The neurobiology of an insect brain. Oxford University Press, New York

    Google Scholar 

  • Camhi J (1970a) Sensory control of abdomen posture in flying locusts. J Exp Biol 52(3):533

    Google Scholar 

  • Camhi J (1970b) Yaw-correcting postural changes in locusts. J Exp Biol 52:519–531

    Google Scholar 

  • Collett T, Nalbach H, Wagner H (1993) Visual stabilization in arthropods. Rev Oculomot Res 5:239–263

    CAS  PubMed  Google Scholar 

  • Dickinson M (1999) Haltere-mediated equilibrium reflexes of the fruit fly, Drosophila melanogaster. Philos Trans R Soc Lond B Biol Sci 354(1385):903–916

    Article  CAS  PubMed  Google Scholar 

  • Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960

    Article  CAS  PubMed  Google Scholar 

  • Dorf R, Bishop R (2008) Modern control systems. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Fox J, Daniel T (2008) A neural basis for gyroscopic force measurement in the halteres of Holorusia. J Comp Physiol A 194(10):887–897

    Article  CAS  Google Scholar 

  • Fox J, Fairhall A, Daniel T (2010) Encoding properties of haltere neurons enable motion feature detection in a biological gyroscope. Proc Natl Acad Sci USA 107(8):3840–3845

    Article  PubMed  Google Scholar 

  • Frye M (2001) Encoding properties of the wing hinge stretch receptor in the hawkmoth Manduca sexta. J Exp Biol 204(Pt 21):3693–3702

    CAS  PubMed  Google Scholar 

  • Gewecke M (1970) Antennae: another wind-sensitive receptor in locusts. Nature 225(5239):1263–1264

    Article  CAS  PubMed  Google Scholar 

  • Gewecke M, Niehaus M (1981) Flight and flight control by the antennae in the Small Tortoiseshell (Aglais urticae L., Lepidoptera). J Comp Physiol A 145(2):249–256

    Article  Google Scholar 

  • Gewecke M, Heinzel H, Philippen J (1974) Role of antennae of the dragonfly Orthetrum cancellatum in flight control. Nature 249:584–585

    Article  Google Scholar 

  • Goodman LJ (1965) The role of certain optomotor reactions in regulating stability in the rolling plane during flight in the desert locust, Schistocerca gregaria. J Exp Biol 43:385–407

    Google Scholar 

  • Götz K (1968) Flight control in Drosophila by visual perception of motion. Kybernetik 4(6):199–208

    Article  PubMed  Google Scholar 

  • Hedrick T (2008) Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspir Biomim 3(3):34,001

    Article  Google Scholar 

  • Hedrick T, Daniel T (2006) Flight control in the hawkmoth Manduca sexta: the inverse problem of hovering. J Exp Biol 209(Pt 16):3114–3130

    Article  CAS  PubMed  Google Scholar 

  • Hensler K (1988) The pars intercerebralis neurone PI (2) 5 of locusts: convergent processing of inputs reporting head movements and deviations from straight flight. J Exp Biol 140:511–533

    Google Scholar 

  • Heran H (1959) Wahrnehmung und Regelung der Flugeigengeschwindigkeit bei Apis mellifica L. J Comp Physiol A 42(2):103–163

    Google Scholar 

  • Kamikouchi A, Inagaki H, Effertz T, Hendrich O, Fiala A, Göpfert M, Ito K (2009) The neural basis of Drosophila gravity-sensing and hearing. Nature 458(7235):165–171

    Article  CAS  PubMed  Google Scholar 

  • Kloppenburg P, Camazine SM, Sun XJ, Randolph P, Hildebrand JG (1997) Organization of the antennal motor system in the sphinx moth Manduca sexta. Cell Tissue Res 287(2):425–433

    Article  CAS  PubMed  Google Scholar 

  • Laughlin S, Weckström M (1993) Fast and slow photoreceptors—a comparative study of the functional diversity of coding and conductances in the Diptera. J Comp Physiol A 172(5):593–609

    Article  Google Scholar 

  • Mountcastle AM, Daniel TL (2009) Aerodynamic and functional consequences of wing compliance. Exp Fluids 45(5):873–882

    Article  Google Scholar 

  • Nalbach G, Hengstenberg R (1994) The halteres of the blowfly Calliphora 2. 3-Dimensional organization of compensatory reactions to real and simulated rotations. J Comp Physiol A 175(6):695–708

    Article  Google Scholar 

  • Niehaus M (1981) Flight and flight control by the antennae in the Small Tortoiseshell (Aglais urticae L., Lepidoptera). J Comp Physiol A 145(2):257–264

    Article  Google Scholar 

  • Pringle J (1948) The gyroscopic mechanism of the halteres of Diptera. Philos Trans R Soc Lond B Biol Sci 233(602):347–384

    Article  Google Scholar 

  • Reichert H (1989) Neural mechanisms underlying axial/appendicular steering reactions in locust flight. Am Zool 29(1):161–169

    Google Scholar 

  • Reiser M, Dickinson M (2008) A modular display system for insect behavioral neuroscience. J Neurosci Methods 167(2):127–139

    Article  PubMed  Google Scholar 

  • Sane S, Dieudonne A, Willis M, Daniel T (2007) Antennal mechanosensors mediate flight control in moths. Science 315(5813):863–866

    Article  CAS  PubMed  Google Scholar 

  • Sherman A, Dickinson M (2003) A comparison of visual and haltere-mediated equilibrium reflexes in the fruit fly Drosophila melanogaster. J Exp Biol 206(Pt 2):295–302

    Article  PubMed  Google Scholar 

  • Sherman A, Dickinson M (2004) Summation of visual and mechanosensory feedback in Drosophila flight control. J Exp Biol 207(Pt 1):133–142

    Article  PubMed  Google Scholar 

  • Taylor CP (1981a) Contribution of compound eyes and ocelli to steering of locusts in flight: I. Behavioural analysis. J Exp Biol 93:1–18

    Google Scholar 

  • Taylor CP (1981b) Contribution of compound eyes and ocelli to steering of locusts in flight: II. Timing changes in flight motor units. J Exp Biol 93:19–31

    Google Scholar 

  • Taylor G, Krapp H (2008) Sensory systems and flight stability: what do insects measure and why? Adv Insect Physiol 34:231–316

    Article  Google Scholar 

  • Theobald JC (2004) Perceiving motion in the dark. PhD thesis, University of Washington, Seattle, WA

  • Theobald JC, Warrant EJ, O’Carroll DC (2010) Wide-field motion tuning in nocturnal hawkmoths. Philos Trans R Soc Lond B Biol Sci 277(1683):853–860

    Article  Google Scholar 

  • Warrant EJ (1999) Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation. Vis Res 39(9):1611–1630

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Michael Reiser for engineering the LED panels system and for his helpful advice when setting it up, and David Williams for help with the stepper motor controller. In addition we are grateful to K. Morgansen Hill, Z. Aldworth, A. Mountcastle, B. Medina, and other members of the Daniel lab for critical reviews of the manuscript. Support was provided by the Joan and Richard Komen Endowed Chair and grants form DARPA and ONR to TLD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin J. Hinterwirth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental movie (MOV 5004 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinterwirth, A.J., Daniel, T.L. Antennae in the hawkmoth Manduca sexta (Lepidoptera, Sphingidae) mediate abdominal flexion in response to mechanical stimuli. J Comp Physiol A 196, 947–956 (2010). https://doi.org/10.1007/s00359-010-0578-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-010-0578-5

Keywords

Navigation