Skip to main content
Log in

The halteres of the blowfly Calliphora

II. Three-dimensional organization of compensatory reactions to real and simulated rotations

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

We quantitatively analysed compensatory head reactions of flies to imposed body rotations in yaw, pitch and roll and characterized the haltere as a sense organ for maintaining equilibrium. During constant velocity rotation, the head first moves to compensate retinal slip and then attains a plateau excursion (Fig. 3). Below 500°/s, initial head velocity as well as final excursion depend linearily on stimulus velocities for all three axes. Head saccades occur rarely and are synchronous to wing beat saccades (Fig. 5). They are interpreted as spontaneous actions superposed to the compensatory reaction and are thus not resetting movements like the fast phase of ‘vestibulo-ocular’ nystagmus in vertebrates. In addition to subjecting the flies to actual body rotations we developed a method to mimick rotational stimuli by subjecting the body of a flying fly to vibrations (1 to 200 μm, 130 to 150 Hz), which were coupled on line to the fly's haltere beat. The reactions to simulated Coriolis forces, mimicking a rotation with constant velocity, are qualitatively and to a large extent also quantitatively identical to the reactions to real rotations (Figs. 3, 7–9). Responses to roll- and pitch stimuli are co-axial. During yaw stimulation (halteres and visual) the head performs both a yaw and a roll reaction (Fig. 3e,f), thus reacting not co-axial. This is not due to mechanical constraints of the neck articulation, but rather it is interpreted as an ‘advance compensation’ of a banked body position during free flight yaw turns (Fig. 10).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergmann-Erb D, Heide G (1990) Kontraktionsmodus direkter Flugsteuermuskeln von Calliphora. Proc Göttingen Neurobiol Conf 18:41

    Google Scholar 

  • Blondeau J (1981) Aerodynamic capabilities of flies, as revealed by a new technique. J Exp Biol 92:155–163

    Google Scholar 

  • Camhi JM (1970) Yaw-correcting postural changes in locusts. J Exp Biol 52:519–531

    Google Scholar 

  • Carpenter RHS (1988) Movements of the eyes. 2nd edition, Pion, London

    Google Scholar 

  • Collewijn H (1970) Oculomotor reactions in the cuttlefish, Sepia officinales. J Exp Biol 52:369–384

    Google Scholar 

  • Demoll R (1918) Der Flug der Insekten und der Vögel. Gustav Fischer, Jena

    Google Scholar 

  • Dombrowski UJ (1991) Untersuchungen zur funktionellen Organisation des Flugsystems von Manduca sexta (L.) Dissertation Universität Köln

  • Ennos AR (1989) The kinematics and aerodynamics of the free flight of some Diptera. J Exp Biol 142:49–85

    Google Scholar 

  • Faust R (1952) Untersuchungen zum Halterenproblem. Zool Jahrb Physiol 63:325–366

    Google Scholar 

  • Fraenkel G, Pringle JWS (1938) Halteres of flies as gyroskopic organs of equilibrium. Nature 141:919–921

    Google Scholar 

  • Geiger G, Poggio T (1977) On head and body movements of flying flies. Biol Cybern 25:177–180

    Google Scholar 

  • Gewecke M (1967) Die Wirkung von Luftströmung auf die Antennen und das Flugverhalten der Blauen Schmeißfliege (Calliphora erythrocephala). Z Vergl Physiol 54: 121–164

    Google Scholar 

  • Götz KG, Hengstenberg B, Biesinger R (1979) Optomotor control of wing beat and body posture in Drosophila. Biol Cybern 35:101–112

    Google Scholar 

  • Grieger B, Bolz J, Varju D (1981) On the visually evoked head nystagmus of Tenebrio molitor and other beetles. Biol Cybern 41:1–3

    Google Scholar 

  • Grün H von der (1989) Quantitative Untersuchungen des optokinetischen Nystagmus der malaiischen Stielaugenfliege Cyrtodiopsis whitei Curran (Diopsidae, Diptera). Dissertation, Universität Regensburg

  • Heisenberg M, Wolf R (1984) Vision in Drosophila. Genetics of Microbehavior. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Hengstenberg R (1971) Das Augenmuskelsystem der Stubenfliege Musca domestica I. Analyse der ‘clock-spikes’ und ihrer Quellen. Kybernetik 2:56–77

    Google Scholar 

  • Hengstenberg R (1984) Roll-stabilization, during flight of the blowfly's head and body by mechanical and visual cues. In: Varju D, Schnitzler H (eds) Localization and orientation in biology and engineering. Springer, Berlin Heidelberg New York, pp 121–134

    Google Scholar 

  • Hengstenberg R (1988) Mechanosensory control of compensatory head roll during flight in the blowfly Calliphora erythrocephala Meig. J Comp Physiol A 163:151–165

    Google Scholar 

  • Hengstenberg R (1991) Gaze control in the blowfly Calliphora: a multisensory, two-stage integration process. The Neurosciences 3:19–29

    Google Scholar 

  • Hengstenberg R, Sandeman DC, Hengstenberg B (1986) Compensatory head roll in the blowfly Calliphora during flight. Proc R Soc Lond B 227:455–482

    Google Scholar 

  • Henn V, Straumann D, Hess BJM, Haslwanter Th, Kawachi N (1992) Three-dimensional transformations from vestibular and visual input to oculomotor output. Ann New York Acad Sci 656:166–180

    Google Scholar 

  • Hollick FSJ (1940) The flight of the dipterous fly Muscina stabulans. Phil Trans R Soc Lond B 230:357–390

    Google Scholar 

  • Holst E von, Küchemann D (1941) Biologische und aerodynamische Probleme des Tierflugs. Naturwissenschaften 29:348–362

    Google Scholar 

  • Horn E, Knapp A (1984) On the invariance of visual stimulus efficacy with respect to variable spatial positions. J Comp Physiol A 154:555–567

    Google Scholar 

  • Kien J, Land MF (1978) The fast phase of optokinetic nystagmus in the locust. Physiol Entomol 3:53–57

    Google Scholar 

  • Land MF (1975) Head movements and fly vision. In: Horridge GA (ed) The compound eye and vision of insects. Clarendon Press, Oxford, pp 469–489

    Google Scholar 

  • Mittelstaedt H (1950) Physiologie des Geichgewichtssinnes bei fliegenden Libellen. Z Vergl Physiol 32:422–463

    Google Scholar 

  • Nalbach G (1985) Die Haltere als Drehsinnesorgan. Zulassungsarbeit für das Staatsexamen, Universität Tübingen

  • Nalbach G (1988) Linear oscillations elicit haltere mediated turning illusions and entrainment in the blowfly Calliphora. Proc Göttingen Neurobiol Conf 16:131

    Google Scholar 

  • Nalbach G (1991a) Verhaltensuntersuchungen zur Funktion der Halteren bei der Schmeißfliege Calliphora erythrocephala mit echten und simulierten Drehreizen. Dissertation, Universität Tübingen

  • Nalbach G (1991b) The halteres of Calliphora — a measuring system with non-orthogonal axes. Proc Göttingen Neurobiol Conf 19:41

    Google Scholar 

  • Nalbach G (1991c) Body and gaze stabilization via sense organs for rotational velocity: analysis of the haltere function with vibrational stimuli. Verh Dtsch Zool Ges 84:355

    Google Scholar 

  • Nalbach G (1993) The halteres of the blowfly Calliphora. I. Kinematics and dynamics. J Comp Physiol A 173:293–300

    Google Scholar 

  • Nalbach G (1994) Extremely non-orthogonal axes in a sense organ for rotation: Behavioural analysis of the dipteran haltere system. Neuroscience 61:149–163

    Google Scholar 

  • Nalbach G, Hengstenberg R (1986) Die Halteren von Calliphora als Drehsinnesorgan. Verh Dtsch Zool Ges 79:229

    Google Scholar 

  • Nalbach HO (1990) Multisensory control of eyestalk orientation in decapod crustaceans: an ecological approach. J Crust Biol 10(3):382–399

    Google Scholar 

  • Nalbach HO, Nalbach G, Forzin L (1989) Visual control of eyestalk orientation in crabs: vertical optokinetics, visual fixation of the horizon, and eye design. J Comp Physiol A 160:127–135

    Google Scholar 

  • Neil DM, Schöne H, Scapini F, Miyan JA (1983) Optokinetic responses, visual adaptation and multisensory control of eye movements in the spiny lobster, Palinurus vulgaris. J Exp Biol 107:349–366

    Google Scholar 

  • Pix W, Nalbach G, Zeil J (1993) Strepsipteran forewings are haltere-like organs of equilibrium. Naturwissenschaften 80:371–374

    Google Scholar 

  • Preuss T, Hengstenberg R (1992) Structure and kinematics of the prosternal organs and their influence on head position in the blowfly Calliphora erythrocephala Meig. J Comp Physiol A 171:483–493

    Google Scholar 

  • Pringle JWS (1948) The gyroscopic mechanism of the halteres of Diptera. Phil Trans R Soc Lond B 233:347–384

    Google Scholar 

  • Pringle JWS (1968) Comparative physiology of the flight motor. Advances in Insect Physiology 5:163–227

    Google Scholar 

  • Robert D, Rowell CHF (1992) Locust flight steering I. Head movements and the organization of correctional manoeuvres. J Comp Physiol A 171:41–51

    Google Scholar 

  • Rossel S (1980) Foveal fixation and tracking in the praying Mantis. J Comp Physiol 139:307–331

    Google Scholar 

  • Sandeman DC (1980) Angular acceleration, compensatory head movements and the halteres of flies (Lucilia serricata). J Comp Physiol 136:361–367

    Google Scholar 

  • Sandeman DC (1983) The balance and visual systems of the swimming crab: their morphology and interaction. Fortschr Zool 28:213–229

    Google Scholar 

  • Sandeman DC, Markl H (1980) Head movements in flies (Calliphora) produced by deflection of the halteres. J Exp Biol 85:43–60

    Google Scholar 

  • Schneider G (1953) Die Halteren der Schmeißfliege (Calliphora) als Sinnesorgane und als mechanische Flugstabilisatoren. Z Vergl Physiol 35:416–458

    Google Scholar 

  • Schöne H (1984) Spatial orientation. Princeton University Press, Princeton

    Google Scholar 

  • Shepheard P (1974) Control of head movement in the locust, Schistocerca gregaria. J Exp Biol 60:735–767

    Google Scholar 

  • Stellwaag F (1916) Wie steuern die Insekten während des Fluges? Biol Zbl 36:30–44

    Google Scholar 

  • Tracey D (1975) Head movements mediated by halteres in the fly (Musca domestica). Experientia 31:44–45

    Google Scholar 

  • Traenkle CA (1977) Flugmechanik II, Stabilität und Steuerung. Minerva Publikation, München

    Google Scholar 

  • Wagner H (1986a) Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.). I. Organization of the flight motor. Phil Trans R Soc Lond B 312:527–551

    Google Scholar 

  • Wagner H (1986b) Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.). II. Pursuit of targets. Phil Trans R Soc Lond B 312:553–579

    Google Scholar 

  • Wagner H (1986c) Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.). III. Interactions between angular movement induced by wideand small-field stimuli. Phil Trans R Soc Lond B 312:581–595

    Google Scholar 

  • Wallman J, Letelier JC (1993) Eye movements, head movements, and gaze stabilization in birds. In: Zeigler HP, Bischof HJ (eds) Vision, brain, and behavior in birds. MIT Press, Cambridge London

    Google Scholar 

  • Wienrich M (1979) Untersuchung des neuromotorischen Erregungsmusters in direkten Flugmuskeln von Fliegen, die während des Fluges um ihre Hochachse gedreht werden. Diplomarbeit, Universität Düsseldorf

  • Zanker JM (1988a) How does lateral abdomen deflection contribute to flight control of Drosophila melanogaster? J Comp Physiol A 162:581–588

    Google Scholar 

  • Zanker JM (1988b) On the mechanism of speed and altitude control in Drosophila melanogaster. Physiol Entomol 13:351–361

    Google Scholar 

  • Zanker JM (1990) The wing beat of Drosophila melanogaster III. Control. Phil Trans R Soc Lond B 327:45–64

    Google Scholar 

  • Zanker JM, Egelhaaf M, Warzecha A-K (1991) On the coordination of motor output during visual flight control of flies. J Comp Physiol A 169:127–134

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nalbach, G., Hengstenberg, R. The halteres of the blowfly Calliphora . J Comp Physiol A 175, 695–708 (1994). https://doi.org/10.1007/BF00191842

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00191842

Key words

Navigation