Skip to main content
Log in

Flight control in Drosophila by visual perception of motion

  • Published:
Kybernetik Aims and scope Submit manuscript

Summary

Apparent motion was simulated in the visual system of the tethered fruitfly Drosophila melanogaster by projecting moving stripe patterns onto stationary screens positioned in front of the lateral eye regions. The reactions of the animal were recorded under conditions of stationary flight in still air. It was found that visual stimulation modifies, independently, torque and thrust of the flight system. The responses appear suitable to counteract involuntary changes of direction and altitude in free flight.

Concerning the sensory system for visual flight control, the following was established:

  1. 1.

    Both eyes are functionally equal, and sensitive to pattern motion in any direction.

  2. 2.

    The motion detecting subunits possess a certain orientation on the eye surface, and discriminate between pattern motions that are progressive or regressive relative to this orientation.

  3. 3.

    Progressive and regressive stimuli elicit opposite responses in the flight system.

  4. 4.

    The subunit orientations are expected to group in at least two different directions that share a common line of symmetry with the internal eye structure.

  5. 5.

    A minimum of two contralateral and two ipsilateral nerve connections between the visual system and the motor system is required for the various torque and thrust responses.

Concerning the effect of pattern motion on the flight system, the following was found:

  1. 1.

    The motion detectors control only the magnitude of the force of flight. With the tethered animal in still air, the inclination of the force vector remains constant.

  2. 2.

    Consequently, the stroke plane and the wing pitch should be invariant to visual stimulation.

  3. 3.

    Possible influences of pattern motion on the wing-beat frequency were ruled out by frequency measurements.

  4. 4.

    The only major variables in wing articulation that respond to pattern motion are the wing-beat amplitudes on either side of the insect. In-flight photographs show that the difference and the sum of these amplitudes are, in fact, representative for the torque and the thrust of the flight system. The responses of the body posture may become important to flight performance at increased airspeed.

Comparative experiments with the housefly Musca domestica indicate that the principle of independent torque and thrust control by vision is adopted in at least two different species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bishop, L. G., D. G. Keehn, and G. D. Mccann: Studies of motion detection by interneurons of the optic lobes and brain of the flies Calliphora phenicia and Musca domestica. (In preparation.)

  • Bliss, J. C.: Visual information processing in the beetle Lixus. Published in D. K. Pollack et al. (eds.), Optical processing of information. Washington: Spartan Books 1963.

    Google Scholar 

  • Braitenberg, V. v., and C. Taddei Ferretti: Landing reactions of Musca domestica induced by visual stimuli. Naturwissenschaften 53, 155 (1966).

    Google Scholar 

  • Burkhardt, D., u. W. Kaiser: (In preparation).

  • Campenhausen, C. v.: The ability of Limulus to see visual patterns. J. exp. Biol. 46, 557–570 (1967).

    Google Scholar 

  • Chadwick, L. E.: Insect flight. Published in K. D. Roeder (ed.), Insect physiology. New York: John Wiley & Sons 1953.

    Google Scholar 

  • Collett, T. S., and A. D. Blest: Binocular, directionally sensitive neurons, possibly involved in the optomotor response of insects. Nature (Lond.) 212, 1330–1333 (1966).

    Google Scholar 

  • Fermi, G., u. W. Reichardt: Optomotorische Reaktionen der Fliege Musca domestica. Kybernetik 2, 15–28 (1963).

    Google Scholar 

  • Franceschini, N.: (Inpreparation).

  • Götz, K. G.: Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2, 77–92 (1964).

    Google Scholar 

  • — Die optischen Übertragungseigenschaften des Komplexauges von Drosophila. Kybernetik 2, 215–221 (1965).

    Google Scholar 

  • Götz, K. G. Behavioral analysis of the visual system of the fruitfly Drosophila. Pasadena: Proc. Symp. Information Processing in Sight Sensory Systems, p. 85–100 (1965).

  • Hassenstein, B.: Kybernetik und biologische Forschung, p. 705–715. Handbuch der Biologie I/2. Frankfurt a. M.: Athenaion 1966.

    Google Scholar 

  • Hengstenberg, R., u. K. G. Götz: Der Einfluß des Schirmpigmentgehalts auf die Helligkeits und Kontrastwahrnehmung von Drosophila-Augenmutanten. Kybernetik 3, 276–285 (1967).

    Google Scholar 

  • Horridge, G. A.: Optokinetic memory in the locust. J. exp. Biol. 44, 255–261 (1966).

    Google Scholar 

  • Horridge, G. A., and D. C. Sandeman: Nervous control of optokinetic responses in the crab Carcinus. Proc. roy. Soc. B, 161, 216–246 (1964).

    Google Scholar 

  • Kirschfeld, K.: Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp. Brain Res. 3, 248–270 (1967).

    Google Scholar 

  • Kunze, P.: Untersuchung des Bewegungssehens fixiert fliegender Bienen. Z. vergl. Physiol. 44, 656–684 (1961).

    Google Scholar 

  • — Eye-stalk reactions of the ghost crab Ocypode. Published in R. F. Reiss (ed.), Neural theory and modeling, p. 293–306. Stanford: Stanford University Press 1964.

    Google Scholar 

  • Maynard, D. M., and H. C. Howland: Dynamics of the optomotor response in mantids. 9th Internat. Ethological Conference, Zürich, 1965.

  • Mccann, G. D., and G. F. MacGinitie: Optomotor response studies of insect vision. Proc. roy. Soc. B, 163, 369–401 (1965).

    Google Scholar 

  • Mittelstaedt, H.: Zur Analyse physiologischer Regelsysteme. Verh, dtsch. Zool. Ges. Wilhelmshaven 8, 150–157 (1951).

    Google Scholar 

  • Nachtigall, W., and D. Wilson: Neuro-muscular control of dipteran flight. J. exp. Biol. 47, 77–97 (1967).

    Google Scholar 

  • Palka, J.: Diffraction and visual acuity of insects. Science 149, 551–553 (1965).

    Google Scholar 

  • Pringle, J. W. S.: Insect flight. Cambridge: Cambridge University Press 1957.

    Google Scholar 

  • — Locomotion: Flight. Published in M. Rockstein (ed.), The physiology of insecta. New York: Academic Press 1965.

    Google Scholar 

  • Reichardt, W.: Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. Published in W. A. Rosenblith (ed.), Sensory communication, p. 303–317. New York: John Wiley & Sons 1961.

    Google Scholar 

  • — Quantum sensitivity of light receptors in the compound eye of the fly Musca. Cold Spr. Harb. Symp. quant. biol. 30, 505–515 (1965).

    Google Scholar 

  • Reichardt, W., V. v. Braitenberg u. G. Weidel: Auslösung von Elementarprozessen durch einzelne Lichtquanten im Fliegenauge. Kybernetik. (In the press).

  • Schneider, G.: Zur spektralen Empfindlichkeit des Komplexauges von Calliphora. Z. vergl. Physiol. 39, 1–20 (1956).

    Google Scholar 

  • Schneider, P.: Vergleichende Untersuchungen zur Steuerung der Fluggeschwindigkeit bei Calliphora vicina. Z. wiss. Zool. 173, 114–173 (1965).

    Google Scholar 

  • Shepheard, P. R. B.: Optokinetic memory and the perception of movement by the crab Carcinus. Published in C. G. Bernhard (ed.), The functional organization of the compound eye. Oxford: Pergamon Press 1966.

    Google Scholar 

  • Smyth, T., and W. J. Yurkiewicz: Visual reflex control of indirect flight muscles in the sheep blowfly. Comp. Biochem. Physiol. 17, 1175–1180 (1966).

    Google Scholar 

  • Thorson, J.: Small-signal analysis of a visual reflex in locust, I and II. Kybernetik 3, 41–53 and 53–66 (1966).

    Google Scholar 

  • Varjú, D., u. W. Reichardt: Übertragungseigenschaften im Auswerte-System für das Bewegungssehen. II. Z. Naturforsch. 22b, 1343–1351 (1967).

    Google Scholar 

  • Vogel, S.: Flight in Drosophila. I. Flight performance in tethered flies. J. exp. Biol. 44, 567–578 (1966): II. Variations in stroke parameters and wing contour. J. exp. Biol. 46, 383–392 (1967).

    Google Scholar 

  • Weis-fogh, T.: Biology and physics of locust flight. VIII. J. exp. Biol. 41, 257–271 (1964).

    Google Scholar 

  • Wilson, D. M., and R. R. Hoy: Optomotor reaction, locomotry bias, and reactive inhibition in the milkweed bug Oncopeltus and the beetle Zophobas. Z. vergl. Physiol. 58, 136–152 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Encouragement from Prof. W. Reichardt and the technical help from Mr. H. Wenking as well as Mr. H. Braun, Mr. T. Davidson, Mr. E. Freiberg, Mrs. I. Geiss, Miss B. Köhler, and Dr. S. Pickering are gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Götz, K.G. Flight control in Drosophila by visual perception of motion. Kybernetik 4, 199–208 (1968). https://doi.org/10.1007/BF00272517

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00272517

Keywords

Navigation