Skip to main content
Log in

Receptive field properties of neurons in the electrosensory lateral line lobe of the weakly electric fish, Gnathonemus petersii

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The receptive field of a sensory neuron is known as that region in sensory space where a stimulus will alter the response of the neuron. We determined the spatial dimensions and the shape of receptive fields of electrosensitive neurons in the medial zone of the electrosensory lateral line lobe of the African weakly electric fish, Gnathonemus petersii, by using single cell recordings. The medial zone receives input from sensory cells which encode the stimulus amplitude. We analysed the receptive fields of 71 neurons. The size and shape of the receptive fields were determined as a function of spike rate and first spike latency and showed differences for the two analysis methods used. Spatial diameters ranged from 2 to 36 mm (spike rate) and from 2.45 to 14.12 mm (first spike latency). Some of the receptive fields were simple consisting only of one uniform centre, whereas most receptive fields showed a complex and antagonistic centre-surround organisation. Several units had a very complex structure with multiple centres and surrounding-areas. While receptive field size did not correlate with peripheral receptor location, the complexity of the receptive fields increased from rostral to caudal along the fish’s body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CN:

Command nucleus

CS:

Command signal

EOCD:

Electric organ corollary discharge

EOD:

Electric organ discharge

ELL:

Electrosensory lateral line lobe

lat:

First spike latency

PS:

Point stimulus

PSTH:

Peri-stimulus time histogram

RF:

Receptive field

SR:

Spike rate

References

  • Adelman TL, Bialek W, Olberg RM (2003) The information content of receptive fields. Neuron 40:823–833

    Article  PubMed  CAS  Google Scholar 

  • Babineau D, Lewis JE, Longtin A (2007) Spatial acuity and prey detection in weakly electric fish. PLoS Comput Biol 3:402–411

    Article  CAS  Google Scholar 

  • Bacelo J (2007) Sensory processing in the electrosensory lobe of the weakly electric fish Gnathonemus petersii. Neurosciences. L’Université Paris 6-Pierre et Marie Curie, Paris, p 168

  • Bacelo J, Engelmann J, Hollmann M, von der Emde G, Grant K (2008) Functional foveae in an electrosensory system. J Comp Neurol 511:342–359

    Article  PubMed  Google Scholar 

  • Bastian J (1975) Receptive fields of cerebellar cells receiving exteroceptive input in a Gymnotid fish. J Neurophysiol 38:285–300

    PubMed  CAS  Google Scholar 

  • Bastian J (1981) Electrolocation. 2. The effects of moving-objects and other electrical stimuli on the activities of 2 categories of posterior lateral line lobe cells in Apteronotus albifrons. J Comp Physiol A 144:481–494

    Article  Google Scholar 

  • Bastian J, Chacron MJ, Maler L (2002) Receptive field organization determines pyramidal cell stimulus-encoding capability and spatial stimulus selectivity. J Neurosci 22:4577–4590

    PubMed  CAS  Google Scholar 

  • Békésy GV (1967) Sensory inhibition. Princeton University Press, Princeton

    Google Scholar 

  • Bell CC (1989) Sensory coding and corollary discharge effects in mormyrid electric fish. J Exp Biol 146:229–253

    PubMed  CAS  Google Scholar 

  • Bell CC (1990a) Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. III. Physiological differences between two morphological types of fibers. J Neurophysiol 63:319–332

    PubMed  CAS  Google Scholar 

  • Bell CC (1990b) Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. II. Intraaxonal recordings show initial-stages of central processing. J Neurophysiol 63:303–318

    PubMed  CAS  Google Scholar 

  • Bell CC, Grant K (1992) Sensory processing and corollary discharge effects in mormyromast regions of mormyrid electrosensory lobe. 2. Cell-types and corollary discharge plasticity. J Neurophysiol 68:859–875

    PubMed  CAS  Google Scholar 

  • Bell CC, Russell CJ (1978) Termination of electroreceptor and mechanical lateral line afferents in the mormyrid acousticolateral area. J Comp Neurol 182:367–382

    Article  PubMed  CAS  Google Scholar 

  • Bell CC, von der Emde G (1995) Electric organ corollary discharge pathways in mormyrid fish. 2. The medial juxtalobar nucleus. J Comp Physiol A 177:463–479

    Google Scholar 

  • Bell CC, Finger TE, Russell CJ (1981) Central connections of the posterior lateral line lobe in mormyrid fish. Exp Brain Res 42:9–22

    Article  PubMed  CAS  Google Scholar 

  • Bell CC, Zakon H, Finger TE (1989) Mormyromast electroreceptor organs and their afferent-fibers in mormyrid fish: 1. Morphology. J Comp Neurol 286:391–407

    Article  PubMed  CAS  Google Scholar 

  • Bell CC, Grant K, Serrier J (1992) Sensory processing and corollary discharge effects in the mormyromast regions of the mormyrid electrosensory lobe. 1. Field potentials, cellular-activity in associated structures. J Neurophysiol 68:843–858

    PubMed  CAS  Google Scholar 

  • Bell CC, Dunn K, Hall C, Caputi A (1995) Electric organ corollary discharge pathways in mormyrid fish. 1. The mesencephalic command associated nucleus. J Comp Physiol A 177:449–462

    Google Scholar 

  • Bell CC, Han VZ, Sugawara Y, Grant K (1997) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387:278–281

    Article  PubMed  CAS  Google Scholar 

  • Budelli R, Caputi AA (2000) The electric image in weakly electric fish: perception of objects of complex impedance. J Exp Biol 203:481–492

    PubMed  CAS  Google Scholar 

  • Caputi A, Budelli R (1995) The electric image in weakly electric fish. I. A data-based model of wave-form generation in Gymnotus carapo. J Comput Neurosci 2:131–147

    Article  PubMed  CAS  Google Scholar 

  • Caputi AA, Budelli R (2006) Peripheral electrosensory imaging by weakly electric fish. J Comp Physiol A 192:587–600

    Article  CAS  Google Scholar 

  • Caputi AA, Castello ME, Aguilera P, Trujillo-Cenoz O (2002) Electrolocation and electrocommunication in pulse gymnotids: signal carriers, pre-receptor mechanisms and the electrosensory mosaic. J Physiol Paris 96:493–505

    Article  PubMed  Google Scholar 

  • Chacron MJ, Doiron B, Maler L, Longtin A, Bastian J (2003) Non-classical receptive field mediates switch in a sensory neuron’s frequency tuning. Nature 423:77–81

    Article  PubMed  CAS  Google Scholar 

  • Engelmann J, Bacelo J, van den Burg E, Grant K (2006) Sensory and motor effects of etomidate anesthesia. J Neurophysiol 95:1231–1243

    Article  PubMed  CAS  Google Scholar 

  • Engelmann J, Bacelo J, Metzen M, Pusch R, Bouton B, Migliaro A, Caputi A, Budelli R, Grant K, von der Emde G (2008) Electric imaging through active electrolocation: implication for the analysis of complex scenes. Biol Cybern 98:519–539

    Article  PubMed  Google Scholar 

  • Eurich CW, Schwegler H (1997) Coarse coding: calculation of the resolution achieved by a population of large receptive field neurons. Biol Cybern 76:357–363

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick D (2000) Seeing beyond the receptive field in primary visual cortex. Curr Opin Neurobiol 10:438–443

    Article  PubMed  CAS  Google Scholar 

  • Fujita K, Kashimori Y (2006) Population coding of electrosensory stimulus in receptor network. Neurocomputing 69:1206–1210

    Article  Google Scholar 

  • Gabbiani F, Metzner W, Wessel R, Koch C (1996) From stimulus encoding to feature extraction in weakly electric fish. Nature 384:564–567

    Article  PubMed  CAS  Google Scholar 

  • Gilbert CD (1992) Horizontal integration and cortical dynamics. Neuron 9:1–13

    Article  PubMed  CAS  Google Scholar 

  • Gilbert CD (1998) Adult cortical dynamics. Physiol Rev 78:467–485

    PubMed  CAS  Google Scholar 

  • Goenechea L, von der Emde G (2004) Responses of neurons in the electrosensory lateral line lobe of the weakly electric fish Gnathonemus petersii to simple and complex electrosensory stimuli. J Comp Physiol A 190:907–922

    Google Scholar 

  • Gómez L, Budelli R, Grant K, Caputi AA (2004) Pre-receptor profile of sensory images and primary afferent neuronal representation in the mormyrid electrosensory system. J Exp Biol 207:2443–2453

    Article  PubMed  Google Scholar 

  • Harder W (1968) Die Beziehungen zwischen Elektrorezeptoren, Elektrischem Organ, Seitenlinienorganen und Nervensystem bei den Mormyridae (Teleostei, Pisces). J Comp Physiol A 59:272–318

    Google Scholar 

  • Hollmann M, Engelmann J, von der Emde G (2008) Distribution, density and morphology of electroreceptor organs in mormyrid weakly electric fish: anatomical investigations of a receptor mosaic. J Zool. doi:10.1111/j.1469-7998.2008.00465.x

  • Kapadia MK, Ito M, Gilbert CD, Westheimer G (1995) Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron 15:843–856

    Article  PubMed  CAS  Google Scholar 

  • Konishi M (1993) Listening with two ears. Sci Am 268:66–73

    Article  PubMed  CAS  Google Scholar 

  • Lewis JE, Maler L (2001) Neuronal population codes and the perception of object distance in weakly electric fish. J Neurosci 21:2842–2850

    PubMed  CAS  Google Scholar 

  • Li CY, Li W (1994) Extensive integration field beyond the classical receptive field of cat’s striate cortical neurons—classification and tuning properties. Vision Res 34:2337–2355

    Article  PubMed  CAS  Google Scholar 

  • Lissmann HW, Machin KE (1958) The mechanism of object location in Gymnarchus niloticus and similar fish. J Exp Biol 35:451–486

    Google Scholar 

  • McKee SP, Nakayama K (1984) The detection of motion in the peripheral visual field. Vis Res 24:25–32

    Article  PubMed  CAS  Google Scholar 

  • Meek J, Grant K, Bell C (1999) Structural organization of the mormyrid electrosensory lateral line lobe. J Exp Biol 202:1291–1300

    PubMed  Google Scholar 

  • Meek J, Hafmans TGM, Han V, Bell CC, Grant K (2001) Myelinated dendrites in the mormyrid electrosensory lobe. J Comp Neurol 431:255–275

    Article  PubMed  CAS  Google Scholar 

  • Metzner W, Juranek J (1997) A sensory brain map for each behavior? Proc Natl Acad Sci USA 94:14798–14803

    Article  PubMed  CAS  Google Scholar 

  • Mohr C, Roberts PD, Bell CC (2003a) The mormyromast region of the mormyrid electrosensory lobe. II. Responses to input from central sources. J Neurophysiol 90:1211–1223

    Article  PubMed  Google Scholar 

  • Mohr C, Roberts PD, Bell CC (2003b) The mormyromast region of the mormyrid electrosensory lobe. I. Responses to corollary discharge and electrosensory stimuli. J Neurophysiol 90:1193–1210

    Article  PubMed  Google Scholar 

  • Montgomery JC, Coombs S, Conley RA, Bodznick D (1995) Hindbrain sensory processing in lateral line, electrosensory, and auditory systems: a comparative overview of anatomical and functional similarities. Audit Neurosci 1:207–231

    Google Scholar 

  • Mountcastle V, Darian-Smith I (1974) Neuronal mechanisms in somesthesia. In: Mountcastle VB (ed) Medical physiology. CV Mosby, St Louis

  • Orban GA, Van Calenbergh F, De Bruyn B, Maes H (1985) Velocity discrimination in central and peripheral visual field. J Opt Soc Am A Opt image Sci 11:1836–1847

    Article  Google Scholar 

  • Peichl L, Wässle H (1979) Size, scatter and coverage of ganglion cell receptive field centres in the cat retina. J Physiol 291:117–141

    PubMed  CAS  Google Scholar 

  • Pereira AC, Centurion V, Caputi AA (2005) Contextual effects of small environments on the electric images of objects and their brain evoked responses in weakly electric fish. J Exp Biol 208:961–972

    Article  PubMed  Google Scholar 

  • Petkov N, Subramanian E (2007) Motion detection, noise reduction, texture suppression, and contour enhancement by spatiotemporal Gabor filters with surround inhibition. Biol Cybern

  • Post N, von der Emde G (1999) The “novelty response” in an electric fish: response properties and habituation. Physiol Behav 68:115–128

    Article  PubMed  CAS  Google Scholar 

  • Pusch R, von der Emde G, Hollmann M, Bacelo J, Nöbel S, Grant K, Engelmann J (2008) Active sensing in a mormyrid fish: electric images and peripheral modifications of the signal carrier give evidence of dual foveation. J Exp Biol 211:921–934

    Article  PubMed  Google Scholar 

  • Quinet P (1971) Etude systématique des organes sensoriels de la peau des Mormyriformes (Pisces, Mormyriformes). Musée royal de l’Afrique centrale, Tervuren

  • Rasnow B (1996) The effects of simple objects on the electric field of Apteronotus. J Comp Physiol A 178:397–411

    Google Scholar 

  • Ratcliff F (1965) Mach bands: quantitative studies on neuronal structures in the retina. Holden Day, San Francisco

    Google Scholar 

  • Sachdev RNS, Catania KC (2002) Receptive fields and response properties of neurons in the star-nosed mole’s somatosensory fovea. J Neurophysiol 87:2602–2611

    PubMed  Google Scholar 

  • Sawtell NB, Mohr C, Bell CC (2005) Recurrent feedback in the mormyrid electrosensory system: cells of the preeminential and lateral toral nuclei. J Neurophysiol 93:2090–2103

    Article  PubMed  Google Scholar 

  • Sawtell NB, Williams A, Roberts PD, von der Emde G, Bell CC (2006) Effects of sensing behavior on a latency code. J Neurosci 26:8221–8234

    Article  PubMed  CAS  Google Scholar 

  • Schlegel PA (1974) Activities of rhombencephalic units in mormyrid fish. Exp Brain Res 19:300–313

    Article  PubMed  CAS  Google Scholar 

  • Sengpiel F, Sen A, Blakemore C (1997) Characteristics of surround inhibition in cat area 17. Exp Brain Res 116:216–228

    Article  PubMed  CAS  Google Scholar 

  • Sherman SM (1979) Functional-significance of X and Y cells in normal and visually deprived cats. Trends Neurosci 2:192–195

    Article  Google Scholar 

  • Shumway CA (1989a) Multiple electrosensory maps in the medulla of weakly electric gymnotiform fish. II. Anatomical differences. J Neurosci 9:4400–4415

    PubMed  CAS  Google Scholar 

  • Shumway CA (1989b) Multiple electrosensory maps in the medulla of weakly electric gymnotiform fish. I. Physiological differences. J Neurosci 9:4388–4399

    PubMed  CAS  Google Scholar 

  • Szabo T, Wersäll J (1970) Ultrastructure of an electroreceptor (mormyromast) in a mormyrid fish, Gnathonemus petersii. II. J Ultrastruct Res 30:473–490

    Article  PubMed  CAS  Google Scholar 

  • von der Emde G, Bleckmann H (1992) Differential responses of two types of electroreceptive afferents to signal distortions may permit capacitance measurement in a weakly electric fish, Gnathonemus petersii. J Comp Physiol A 171:683–694

    Article  Google Scholar 

  • von der Emde G, Bleckmann H (1997) Waveform tuning of electroreceptor cells in the weakly electric fish, Gnathonemus petersii. J Comp Physiol A 181:511–524

    Article  Google Scholar 

  • von der Emde G, Schwarz S (2002) Imaging of objects through active electrolocation in Gnathonemus petersii. J Physiol Paris 96:431–444

    Article  PubMed  Google Scholar 

  • von der Emde G, Schwarz S, Gomez L, Budelli R, Grant K (1998) Electric fish measure distance in the dark. Nature 395:890–894

    Article  PubMed  CAS  Google Scholar 

  • Wiggers W, Roth G, Eurich C, Straub A (1995) Binocular depth perception mechanisms in tongue-projecting salamanders. J Comp Physiol A 176:365–377

    Article  Google Scholar 

  • Zipser K, Lamme VAF, Schiller PH (1996) Contextual modulation in primary visual cortex. J Neurosci 16:7376

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the federal state of North Rhine-Westphalia, by the DFG (Em43/11-1), a Marie Curie Fellowship from the European Commission to J. E. (QLK6-CT-2002-5172) and a grant to J. B. from the Portuguese Ministry for Science and Technology (FCT-SFRH/BD/1424/2000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Metzen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metzen, M.G., Engelmann, J., Bacelo, J. et al. Receptive field properties of neurons in the electrosensory lateral line lobe of the weakly electric fish, Gnathonemus petersii . J Comp Physiol A 194, 1063–1075 (2008). https://doi.org/10.1007/s00359-008-0377-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-008-0377-4

Keywords

Navigation