Skip to main content
Log in

Characteristic differences in modulation of stomatogastric musculature by a neuropeptide in three species of Cancer crabs

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Stomatogastric musculature from crabs in the genus Cancer provides a system in which modulatory roles of peptides from the FLRFamide family can be compared. The anterior cardiac plexus (ACP) is a neuroendocrine release site within the Cancer stomatogastric nervous system that is structurally identical in C. borealis, C. productus, and C. magister but that appears to contain FLRFamide-like peptide(s) only in C. productus. We measured the effect of TNRNFLRFamide on nerve-evoked contractions of muscles that were nearby, an intermediate distance, or far from the ACP. We found the spatial pattern of FLRFamidergic modulation of muscles in C. productus to be qualitatively different than in Cborealis or Cmagister. In C. productus, muscles proximal to the ACP were more responsive than distal muscles. In C. borealis, FLRFamidergic response was less dependent on muscle location. These results suggest that functionally different roles of FLRFamides in modulating stomatogastric muscle movements may have evolved in different Cancer species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

acn :

Anterior cardiac nerve

ACN1/2:

Anterior commissural neurons 1 and 2

ACP:

Anterior cardiac plexus

AM:

Anterior median neuron

COI:

Cytochrome oxidase I

cpv3a:

Cardiopyloric valve 3a muscle

c6:

Cardiac 6 muscle

CoG:

Commissural ganglion

cv2:

Ventral cardiac 2 muscle

dacn :

Dorsal anterior cardiac nerve

DG:

Dorsal gastric neuron

dgn :

Dorsal gastric nerve

gm4:

Gastric mill 4 muscle

gm8b:

Gastric mill 8b muscle

IC:

Inferior cardiac neuron

lacn :

Lateral anterior cardiac nerve

p8:

Pyloric 8 muscle

LP:

Lateral pyloric neuron

PY:

Pyloric neuron

lvn :

Lateral ventricular nerve

son :

Superior esophageal nerve

MG:

Medial gastric neuron

STG:

Stomatogastric ganglion

mvn :

Medial ventricular nerve

stn :

Stomatogastric nerve

on :

Esophageal nerve

STNS:

Stomatogastric nervous system

References

  • Birmingham JT, Billimoria CP, DeKlotz TR, Stewart RA, Marder E (2003) Differential and history-dependent modulation of a stretch receptor in the stomatogastric system of the crab, Cancer borealis. J Neurophysiol 90:3608–3616

    Article  PubMed  CAS  Google Scholar 

  • Christie AE, Cain SD, Edwards JM, Clason TA, Cherny E, Lin M, Manhas AS, Sellereit KL, Cowan NG, Nold KA, Strassburg HP, Graubard K (2004a) The anterior cardiac plexus: an intrinsic neurosecretory site within the stomatogastric nervous system of the crab Cancer productus. J Exp Biol 207:1163–1182

    Article  PubMed  Google Scholar 

  • Christie AE, Stein W, Quinlan JE, Beenhakker MP, Marder E, Nusbaum MP (2004b) Actions of a histaminergic/peptidergic projection neuron on rhythmic motor patterns in the stomatogastric nervous system of the crab Cancer borealis. J Comp Neurol 469:153–169

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Bermúdez ND, Fu Q, Kutz-Naber KK, Christie AE, Li L, Marder E (2006) Mass spectrometric characterization and physiological actions of GAHKNYLRFamide, a novel FMRFamide-like peptide from crabs of the genus Cancer. J Neurochem 97:784–799

    Article  PubMed  Google Scholar 

  • Fu Q, Kutz KK, Schmidt JJ, Hsu YW, Messinger DI, Cain SD, de la Iglesia HO, Christie AE, Li L (2005) Hormone complement of the Cancer productus sinus gland and pericardial organ: an anatomical and mass spectrometric investigation. J Comp Neurol 493:607–626

    Article  PubMed  CAS  Google Scholar 

  • Fu Q, Li L (2005) De novo sequencing of neuropeptides using reductive isotopic methylation and investigation of ESI QTOF MS/MS fragmentation pattern of neuropeptides with N-terminal dimethylation. Anal Chem 77:7783–7795

    Article  PubMed  CAS  Google Scholar 

  • Harris-Warrick RM, Marder E, Selverston AI, Moulins M (eds) (1992) Dynamic biological networks. The stomatogastric nervous system. MIT Press, Cambridge

  • Harrison MK, Crespi BJ (1999) Phylogenetics of Cancer crabs (Crustacea:Decapoda:Brachyura). Mol Phylogenet Evol 12:186–199

    Article  PubMed  CAS  Google Scholar 

  • Jorge-Rivera JC, Marder E (1996) TNRNFLRFamide and SDRNFLRFamide modulate muscles of the stomatogastric system of the crab Cancer borealis. J Comp Physiol A 179:741–751

    Article  PubMed  CAS  Google Scholar 

  • Jorge-Rivera JC, Marder E (1997) Allatostatin decreases stomatogastric neuromuscular transmission in the crab, Cancer borealis. J Exp Biol 200:2937–2946

    PubMed  CAS  Google Scholar 

  • Jorge-Rivera JC, Sen K, Birmingham JT, Abbott LF, Marder E (1998) Temporal dynamics of convergent modulation at a crustacean neuromuscular junction. J Neurophysiol 80:2559–2570

    PubMed  CAS  Google Scholar 

  • Katz PS, Tazaki K (1992) Comparative and evolutionary aspects of the crustacean stomatogastric system. In: Harris-Warrick RM, Marder E, Selverston AI, Moulins M (eds) Dynamic biological networks: the stomatogastric nervous system. MIT Press, Cambridge

    Google Scholar 

  • Le T, Verley DR, Goaillard JM, Messinger DI, Christie AE, Birmingham JT (2006) Bistable behavior originating in the axon of a crustacean motor neuron. J Neurophysiol 95:1356–1368

    Article  PubMed  Google Scholar 

  • Li L, Kelley WP, Billimoria CP, Christie AE, Pulver SR, Sweedler JV, Marder E (2003) Mass spectrometric investigation of the neuropeptide complement and release in the pericardial organs of the crab, Cancer borealis. J Neurochem 87:642–656

    Article  PubMed  CAS  Google Scholar 

  • Lingle C (1981) The modulatory action of dopamine on crustacean foregut neuromuscular preparations. J Exp Biol 94:285–299

    CAS  Google Scholar 

  • Marder E, Calabrese RL, Nusbaum MP, Trimmer B (1987) Distribution and partial characterization of FMRFamide-like peptides in the stomatogastric nervous systems of the rock crab, Cancer borealis, and the spiny lobster, Panulirus interruptus. J Comp Neurol 259:150–163

    Article  PubMed  CAS  Google Scholar 

  • Maynard DM, Dando MR (1974) The structure of the stomatogastric neuromuscular system in Callinectes sapidus, Homarus americanus and Panulirus argus (decapoda crustacea). Philos Trans R Soc Lond (Biol) 268:161–220

    Article  CAS  Google Scholar 

  • Messinger DI, Kutz KK, Le T, Verley DR, Hsu YW, Ngo CT, Cain SD, Birmingham JT, Li L, Christie AE (2005) Identification and characterization of a tachykinin-containing neuroendocrine organ in the commissural ganglion of the crab Cancer productus. J Exp Biol 208:3303–3319

    Article  PubMed  CAS  Google Scholar 

  • Meyrand P, Marder E (1991) Matching neural and muscle oscillators: control by FMRFamide-like peptides. J Neurosci 11:1150–1161

    PubMed  CAS  Google Scholar 

  • Mortin LI, Marder E (1991) Differential distribution of ß-pigment dispersing hormone (ß-PDH)-like immunoreactivity in the stomatogastric nervous system of five species of decapod crustaceans. Cell Tiss Res 265:19–33

    Article  CAS  Google Scholar 

  • Nations JD (1979) The genus Cancer and its distribution in time and space. Bull Biol Soc Wash 3:153–187

    Google Scholar 

  • Savage EE, Messinger DI, Trieu Q, Doan V, Verley DR, Birmingham JT, Christie AE (2006) Structural but not neurochemical conservation of the anterior cardiac neuron 1/2-anterior cardiac plexus (ACN1/2-ACP) neuroendocrine system of Cancer crabs: implications for differential sensitivities of the foregut musculature to FLRFamide. 2006 Neuroscience Meeting Planner, Atlanta, GA

  • Selverston AI, Moulins M (eds) (1987) The Crustacean Stomatogastric System. Springer-Verlag, Berlin

    Google Scholar 

  • Skiebe P (2001) Neuropeptides are ubiquitous chemical mediators: using the stomatogastric nervous system as a model system. J Exp Biol 204:2035–2048

    PubMed  CAS  Google Scholar 

  • Steinacker A (1978) The anatomy of the decapod crustacean auxiliary heart. Biol Bull 154:497–507

    Article  Google Scholar 

  • Trimmer BA, Kobierski LA, Kravitz EA (1987) Purification and characterization of FMRFamidelike immunoreactive substances from the lobster nervous system: isolation and sequence analysis of two closely related peptides. J Comp Neurol 266:16–26

    Article  PubMed  CAS  Google Scholar 

  • Weimann JM, Meyrand P, Marder E (1991) Neurons that form multiple pattern generators: identification and multiple activity patterns of gastric/pyloric neurons in the crab stomatogastric system. J Neurophysiol 65:111–122

    PubMed  CAS  Google Scholar 

  • Worden MK, Kravitz EA, Goy MF (1995) Peptide F1, an N-terminally extended analog of FMRFamide, enhances contractile activity in multiple target tissues in lobster. J Exp Biol 198:97–108

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Y. Hsu and A. Christie for collecting animals and C. Billimoria, M. Marvier and D. Ostrov for valuable conversations. J.T. Birmingham acknowledges support from the Research Corporation, the Grass Foundation, Santa Clara University (SCU), and an award to SCU under the Undergraduate Biological Sciences Education Program of the Howard Hughes Medical Institute. All experiments complied with the “Principles of animal care”, publication No. 86-23, revised 1985, of the National Institute of Health, and also with the current laws of the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Birmingham.

Appendix

Appendix

Let n(x, y, t) be the time-varying concentration of FLRFamide in saline confined to an infinite plane. Assume its evolution is described by the two-dimensional diffusion equation \( \frac{\partial n}{\partial t} = D\nabla^{2} n \), where D is the diffusion constant, and that n(x, y, 0) = n 0 δ(x)δ(y)—initially all peptide is confined at the origin. The solution to this equation has azimuthal symmetry and is most simply expressed using polar coordinates:

$$ n(r,t) = \frac{{n_{0} }}{4\pi Dt}{\text{e}}^{{ - \frac{{r^{2} }}{4Dt}}} $$
(1)

The time at which the concentration at R is maximum can be obtained by solving \( \frac{{\partial n\left( {R,t} \right)}}{\partial t} = 0. \) The resulting condition is 4Dt = R 2. This result can be substituted back into Eq. 1 to eliminate t and to yield the maximum concentration at r = R:

$$ n_{\max } \left( R \right) = \frac{{n_{0} }}{{\pi R^{2} }}{\text{e}}^{ - 1} $$
(2)

which varies as the inverse square of the distance from the origin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verley, D.R., Doan, V., Trieu, Q. et al. Characteristic differences in modulation of stomatogastric musculature by a neuropeptide in three species of Cancer crabs. J Comp Physiol A 194, 879–886 (2008). https://doi.org/10.1007/s00359-008-0359-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-008-0359-6

Keywords

Navigation