Skip to main content
Log in

A liquid–vapor interface positioning method applied to PLIF measurements around evaporating monodisperse droplet streams

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A planar laser induced fluorescence measurement of the vapor mole fraction field is developed around acetone monodisperse droplet streams. An accurate calibration is performed with an acetone saturated hermetic cell. An interface positioning method based on the Lorenz–Mie theory and on the geometrical optic is proposed on the images with the liquid phase despite the blooming effect. This accurate position is necessary to eliminate the blooming subsequently by hiding the liquid phase. Quantitative results obtained with two different injection temperatures concur with the numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

Δ s :

difference in the interface position (m)

η:

Atthasit factor (Atthasit et al. 2003) (1)

ηoptic :

collection optic efficiency (1)

Φ:

quantum yield (1)

ϕ0 :

diaphragm diameter (m)

λlaser :

laser wavelength (m)

θ:

angle of the emerging fluorescence ray relative to the direction orthogonal to the droplet surface (rad)

ρ liq :

liquid density (kg m−3)

σ:

absorption cross section (m2)

ξ:

angle of the emerging fluorescence ray relative to the laser sheet plane (rad)

c :

light speed (m s−1)

C :

spacing parameter (1)

D d :

droplet diameter (m)

D slice :

sliced light cone diameter (m)

dV C :

collection volume (m3)

E :

laser fluence (J m−2)

E laser :

measured laser energy per pulse (J)

E liq :

laser fluence in liquid phase (J m−2)

E :

laser fluence in dry air (J m−2)

f 1 :

polynomial correction (1)

h :

Planck constant (J s)

\({\mathcal{K}}\) :

calibration coefficient (m2 J−1)

\({\mathcal{K}}_l\) :

liquid phase fluorescence coefficient (J−1 m−1)

L :

distance between the injector and the measurement point (m)

M :

liquid molar mass (kg mol−1)

n :

liquid real refractive index (1)

n i :

liquid imaginary refractive index (1)

\({\mathcal{N}}_A\) :

Avogadro number (mol−1)

P :

pressure (Pa)

P ref :

reference pressure (Pa)

P 0 :

calibration pressure (Pa)

P 1 :

experimental ambient pressure (Pa)

R :

ideal gas constant (J K−1 mol−1)

S d :

distance between two consecutive droplets (m)

S fluo :

fluorescence signal photons number (1)

S fluo :

extrapolated fluorescence signal photons number (1)

S fluo,liq :

liquid phase fluorescence signal photons number (1)

S fluo,ray :

cumulated photons number on an emerging ray (1)

S ref :

fluorescence reference signal photons number (1)

t f :

droplet evolution time between the injector and the measurement point (s)

T :

temperature (K)

T 0 :

calibration temperature (K)

T 1 :

experimental ambient temperature (K)

T cell :

transmission factor of the cell window (1)

T dioptre :

transmission factor through the droplet interface (1)

T mask :

mask transmission factor (1)

T ref :

reference temperature (K)

V droplet :

droplet velocity (m s−1)

x :

Cartesian coordinate (m)

x mask :

Cartesian coordinate of the mask edge (m)

x window :

Cartesian coordinate of the cell window (m)

X acetone :

acetone mole fraction (1)

y :

Cartesian coordinate (m)

z :

Cartesian coordinate (m)

References

  • Abramzon B, Sirignano WA (1989) Droplet vaporization model for spray combustion calculations. Int J Heat Mass Transfer 32:1605–1618

    Article  Google Scholar 

  • Atthasit A, Doué N, Biscos Y, Lavergne G (2003) Influence of droplet concentration on the dynamics and evaporation of a monodisperse stream of droplets in evaporation regime. In: 1st International symposium on combustion and atmospheric pollution, St Petersburg, Russia

  • Bazile R, Stepowski D (1994) Measurements of the vaporization dynamics in the development zone of a burning spray by planar Laser induced fluorescence and Raman scattering. Exp Fluids 16:171–180

    Article  Google Scholar 

  • Castanet G, Lavieille P, Lemoine F, Lebouché M, Atthasit A, Biscos Y, Lavergne G (2002) Energetic budget on an evaporating monodisperse droplet stream using combined optical methods. Evaluation of the convective heat transfer. Int J Heat Mass Transfer 45:5053–5067

    Article  Google Scholar 

  • Castanet G, Delconte A, Lemoine F, Méès L, Gréhan G (2005) Evaluation of temperature gradients within combusting droplets in linear stream using two-colors Laser induced fluorescence. Exp Fluids 39:431–440

    Article  Google Scholar 

  • Castanet G, Maqua C, Orain M, Grisch F, Lemoine F (2007) Investigation of heat and mass transfer between the two phases of an evaporating droplet stream using Laser-induced fluorescence techniques: comparison with modeling. Int J Heat Mass Transfer 50:3670–3683

    Article  MATH  Google Scholar 

  • Dwyer HA, Stapf P, Maly R (2000) Unsteady vaporization and ignition of a three-dimensional droplet array. Combust Flame 121:181–194

    Article  Google Scholar 

  • Frackowiak B, Lavergne G, Gréhan G, Méès L (2004) Improvement of the rainbow technique for thermal gradient evaluation inside a droplet. In: 7th International congress on optical particle characterization, Kyoto, Japan

  • Frackowiak B, Strzelecki A, Lavergne G (2006) Tridimensional computation of interactions between evaporating droplets. In: 31st International symposium on combustion, Heidelberg, Germany

  • Frackowiak B, Strzelecki A, Lavergne G (2007) Vapor concentration measurement around vaporizing droplets by the PLIF technique. Comparison with the numerical simulation. In: 6th International conference on multiphase flow, ICMF 2007, Leipzig, Germany

  • Grisch F, Bresson A, Bouchardy P, Attal-Trétout B (2002) Advanced optical diagnostic applied to dynamic flames and turbulent jets. Aerospace Sci Tech 6:465–479

    Article  Google Scholar 

  • Grossmann F, Monkhouse PB, Ridder M, Sick V, Wolfrum J (1996) Temperature and pressure dependences of Laser induced fluorescence of gas phase acetone and 3-pentamone. Appl Phys B 62:249–253

    Article  Google Scholar 

  • Méès L, Gouesbet G, Gréhan G (2001) Interaction between femtosecond pulses and a spherical microcavity: internal fields. Opt Commun 199:33–38

    Article  Google Scholar 

  • Lavieille P, Delconte A, Blondel D, Lebouché M, Lemoine F (2004) Non intrusive temperature measurements using two-color-Laser-induced fluorescence. Exp Fluids 36:706–716

    Article  Google Scholar 

  • Laurent C, Biscos Y, Doué N, Maqua C, Lemoine F, Gréhan G, Lavergne G (2006) Thermal gradient determination inside vaporizing droplet by combining rainbow and Laser Induced Fluorescence measurements. In: European Fluids Engineering Summer meeting, Miami, USA

  • National Institute of Standards and Technology (NIST) Chemistry WebBook, http://webbook.nist.gov (2005)

  • Niazmand H, Shaw BD, Dwyer HA, Aharon I (1994) Effects of Marangoni convection on transient droplet evaporation. Combust Sci Technol 103:219–233

    Article  Google Scholar 

  • Orain M, Mercier X, Grisch F (2005) PLIF imaging of fuel-vapor spatial distribution around a monodisperse stream of acetone droplets: comparison with modelling. Combust Sci Tech 177:249–278

    Article  Google Scholar 

  • Ossler F, Alden M (1997) Measurements of picosecond Laser induced fluorescence from gas 3-pentanone and acetone: implications in combustion diagnostics. Appl Phys B 64:493–502

    Article  Google Scholar 

  • Ranz WE, Marshall WR (1952) Evaporation from drops. Chem Eng Progr 48:141–146, 173–180

    Google Scholar 

  • Ritchie BD, Seitzman JM (2001) Quantitative acetone PLIF in two-phase flows. AIAA 2001-0414

  • Ritchie BD, Seitzman JM (2004) Simultaneous imaging of vapor and liquid spray concentration using combined acetone fluorescence and phosphorescence. AIAA 2004-0384

  • Saengkaew S, Charinpanitkul T, Méès L, Gréhan G (2006) Rainbow refractometry: on the validity domain of Airy’s and Nussenzweig’s theories. Opt Commun 259:7–13

    Article  Google Scholar 

  • Schulz C, Sick V (2005) Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and air/fuel ratio in practical combustion situations. Prog Energy Combust Sci 31:75–121

    Article  Google Scholar 

  • Thurber MC (1999) Acetone Laser Induced Fluorescence for temperature and multiparameter imaging in gaseous flows. Thesis report TSD-120, Stanford University

  • Thurber MC, Grisch F, Kirby BJ, Vostmeier M, Hansom RK (1998) Measurements and modelling of acetone Laser induced fluorescence with implication for temperature imaging diagnostics. Appl Opt 37:4963

    Article  Google Scholar 

  • Van Cruyningen I, Lozano A, Hanson RK (1990) Quantitative imaging of concentration by Planar induced fluorescence. Exp Fluids 10:41–49

    Article  Google Scholar 

  • Virepinte JF, Magre P, Collin G, Lavergne G, Biscos Y (2000) A rectilinear droplet stream in combustion: droplet and gas phase properties. Combust Sci Technol 150:143–159

    Article  Google Scholar 

  • Yuen LS, Peters JE, Lucht RP (1997) Pressure dependence of Laser induced fluorescence from acetone. Appl Opt 36:3271

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the French environment agency (ADEME) and the car manufacturer Renault for its contribution to improve combustion in engines and reduce the pollutant emissions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Frackowiak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frackowiak, B., Strzelecki, A. & Lavergne, G. A liquid–vapor interface positioning method applied to PLIF measurements around evaporating monodisperse droplet streams. Exp Fluids 46, 671–682 (2009). https://doi.org/10.1007/s00348-008-0592-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-008-0592-3

Keywords

Navigation