Skip to main content
Log in

Non-intrusive temperature measurements using three-color laser-induced fluorescence

  • Original
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This paper presents a new temperature measurement technique in a liquid, based on laser-induced fluorescence of rhodamine B. The fluorescence intensity is detected on three spectral bands, where the ratios between the emission of each band determine the temperature while correcting for the effects of fluorescent re-absorption. In addition, the influence of parameters such as probe volume size, dye concentration, and Beer’s absorption is removed. The principles of the technique are described in this paper, and the technique is demonstrated on a heated liquid jet studied under a constant and a spatially variable dye concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13a, b

Similar content being viewed by others

Abbreviations

C :

molecular concentration of the fluorescent tracer

D :

nozzle diameter

I laser :

incident laser beam intensity

I f :

fluorescence intensity

K opt :

optical constant

K spec :

spectroscopic constant

R 1/2 :

half-width radius of the heated jet

R :

fluorescence ratio

T :

absolute temperature

T inj :

injection temperature

T 0 :

reference temperature

V c :

collection volume

V inj :

injection velocity

V c :

probe volume

(x, y, z):

space coordinates

β :

temperature sensitivity

ε(λ laser):

absorption coefficient for the laser wavelength

ε i :

coefficient characterizing fluorescence re-absorption

η :

fluorescence quantum yield

λ :

wavelength

ΔT :

jet temperature relative to the ambient

ΔT max :

jet centerline temperature relative to the ambient

i :

relative to ith spectral band

*:

normalized values

X ij :

=X i X j

References

  • Chevray R, Tutu NK (1978) Intermittency and preferential transport of heat in a round jet. J Fluid Mech 88:133–160

    Google Scholar 

  • Chua LP, Antonia RA (1990) Turbulent Prandtl number in a circular jet. Int J Heat Mass Transfer 33:331–339

    Article  CAS  Google Scholar 

  • Copetta J, Rogers C (1998) Dual emission laser induced fluorescence for direct planar scalar behavior measurements. Exp Fluids 25:1–15

    CAS  Google Scholar 

  • Corsin S, Uberoi MS (1950) Further investigations on the flow and heat transfer in a heated turbulent turbulent air jet. NACA report 998

  • Dowling DR, Dimotakis PE (1990) Similarity of the concentration field of gas-phase turbulent jets. J Fluid Mech 218:109–141

    CAS  Google Scholar 

  • Forstall W, Gaylord EW (1955) Momentum and mass transfer in a submerged jet. J Appl Mech 22:161–164

    Google Scholar 

  • Hinze JO (1975) Turbulence. McGraw-Hill, New York

  • Hinze JO, Van der Hegge Zijnen BG (1949) Transport of heat and matter in the turbulent mixing zone of an axially symmetrical jet. Appl Sci Res A1:425–461

    Google Scholar 

  • Hishida K, Sakakibara J (2000) Combined planar laser-induced fluorescence–particle image velocimetry technique for velocity temperature fields. Exp Fluids 29:S129–S140

    Article  CAS  Google Scholar 

  • Karasso PS, Mungal MG (1997) PLIF measurements in aqueous flows using the Nd:YAG laser. Exp Fluids 23:382–387

    CAS  Google Scholar 

  • Lavieille P, Lemoine F, Lavergne G, Virepinte JF, Lebouché M (2000a) Temperature measurements on droplets in monodisperse stream using laser-induced fluorescence. Exp Fluids 29:429–437

    Article  Google Scholar 

  • Lavieille P, Lemoine F, Lavergne G, Lebouché M (2001) Evaporating and combusting droplet temperature measurements using two color laser-induced fluorescence. Exp Fluids 31:45–55

    Article  Google Scholar 

  • Lavieille P, Lemoine F, Lebouché M (2000b) On the use of fluorescent tracers to measure droplets temperature. CR Acad Sci Sér IIb 328:55–60

    Google Scholar 

  • Lavieille P, Lemoine F, Lebouché M (2002) Experimental investigation on interacting low evaporating droplets temperature in linear stream using two color laser induced fluorescence. Combust Sci Technol 174:117–142

    CAS  Google Scholar 

  • Lemoine F, Antoine Y, Wolff M, Lebouché M (1999) Simultaneous temperature and 2D velocity measurements in a turbulent heated jet using combined laser-induced fluorescence and LDA. Exp Fluids 26:315–323

    Article  Google Scholar 

  • Lemoine F, Wolff M, Lebouché M (1996) Simultaneous concentration and velocity measurements using combined laser-induced fluorescence and laser Doppler velocimetry. Exp Fluids 20:178–188

    Google Scholar 

  • Nakajima T, Utsunomiya M, Ikada Y, Matsumoto R (1990) Simultaneous measurement of velocity and temperature of water using LDV and fluorescence techniqiue. In: Proceedings of the 5th Symposium on Application of laser techniques to fluid mechanics, Lisbon. Instituto Superior Técnico, Lisbon, pp 2.6.1–2.6.6

  • Panchapakesan NR, Lumley JL (1993) Turbulence measurements in axisymmetric jets of air and helium, Part 2: Helium jet. J Fluid Mech 246:225–247

    CAS  Google Scholar 

  • Papanicolaou PN, List EJ (1988) Investigation of round vertical buoyant jets. J Fluid Mech 195:341–391

    CAS  Google Scholar 

  • Sakakibara J, Adrian RJ (1999) Whole field measurement of temperature in water using two-color laser-induced fluorescence. Exp Fluids 26:7–15

    CAS  Google Scholar 

  • Sakakibara J, Hishida K, Maeda M (1993) Measurements of thermally stratified pipe flow using image processing techniques. Exp Fluids 16:82–96

    Google Scholar 

  • Walker DA (1987) A fluorescence technique for measurement of concentration in mixing liquids. J Phys E: Sci Instrum 20:217–224

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Lemoine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavieille, P., Delconte, A., Blondel, D. et al. Non-intrusive temperature measurements using three-color laser-induced fluorescence. Exp Fluids 36, 706–716 (2004). https://doi.org/10.1007/s00348-003-0748-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-003-0748-0

Keywords

Navigation