Skip to main content
Log in

Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Laser-Induced Fluorescence (LIF) from the S1 state of acetone and 3-pentanone was studied as a function of temperature and pressure using excitation at 248 nm. Additionally, LIF of 3-pentanone was investigated using 277 and 312 nm excitation. Added gases were synthetic air, O2, and N2 respectively, in the range 0–50 bar. At 383 K and for excitation at 248 nm, all the chosen collision partners gave an initial enhancement in fluorescence intensity with added gas pressure. Thereafter, the signal intensity remained constant for N2 but decreased markedly for O2. For synthetic air, only a small decrease occurred beyond 25 bar. At longer excitation wavelengths (277 and 312 nm), the corresponding initial rise in signal with synthetic air pressure was less than that for 248 nm. The temperature dependence of the fluorescence intensity was determined in the range 383–640 K at a constant pressure of 1 bar synthetic air. For 248 nm excitation, a marked fall in the fluorescence signal was observed, whereas for 277 nm excitation the corresponding decrease was only half as strong. By contrast, exciting 3-pentanone at 312 nm, the signal intensity increased markedly in the same temperature range. These results are consistent with the observation of a red shift of the absorption spectra (≈9 nm) over this temperature range. Essentially, the same temperature dependence was obtained at 10 and 20 bar pressure of synthetic air. It is demonstrated that temperatures can be determined from the relative fluorescence intensities following excitation of 3-pentanone at 248 and 312 nm, respectively. This new approach could be of interest as a non-intrusive thermometry method, e.g., for the compression phase in combustion engines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Arnold, H. Becker, R. Suntz, P. Monkhouse, J. Wolfrum, R. Maly, W. Pfister: Opt. Lett.15, 831 (1989)

    Google Scholar 

  2. A. Arnold, A. Buschmann, B. Cousyn, M. Decker, F. Vannobel, V. Sick, J. Wolfrum: SAE Paper932696 (1993)

  3. H. Neij, M. Aldén: Combust. Flame99, 449 (1994)

    Google Scholar 

  4. D.A. Hansen, E.K.C. Lee: J. Chem. Phys.62, 183 (1975)

    Google Scholar 

  5. A. Lozano, B. Yip, R.K. Hanson: Exp. Fluids13, 369 (1992)

    Google Scholar 

  6. Y. Haas: Spectrochim. Acta A46, 541 (1990)

    Google Scholar 

  7. O.L. Gijzmann: Faraday Trans. II70, 708 (1973)

    Google Scholar 

  8. P.B. Merkel, D.J. Kearns: J. Chem. Phys.58, 398 (1973)

    Google Scholar 

  9. F. Ossler, M. Aldén: Appl. Spectrosc. (1996) (submitted)

  10. A. Arnold, A. Bräumer, F. Dinkelacker, P. Monkhonse, K. Witte, M. Schäfer, M. Köllner, W. Ketterle, J. Wolfrum: Final Report, CEC-Project JOULE0021-UK/JC, European Commission (1992)

  11. R. Tait, D. Greenhalgh: Ber Bunsenges. Phys. Chem.97, 1619 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grossmann, F., Monkhouse, P.B., Ridder, M. et al. Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone. Appl. Phys. B 62, 249–253 (1996). https://doi.org/10.1007/BF01080952

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01080952

PACS

Navigation