Skip to main content

Advertisement

Log in

Disease and Pest Resistance through Phenolic Substances in the Solanaceae

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

With the expansion of the planting area of the Solanaceae, diseases and pests have become the main threats to Solanaceae production. Research on the mechanisms of Solanaceae disease and pest resistance is important. Studies have shown that phenolic compounds, which are important secondary metabolites and exist widely in the Solanaceae, are involved in a variety of biological and abiotic stress responses. Phenolic substances are closely related to Solanaceae disease and pest resistance. Solanaceous plants release endogenous phenolic substances in response to pathogen infection. Meanwhile, some exogenous phenolic substances function to prevent and control pests and diseases during the production of solanaceous plants. Therefore, determining the mechanisms of phenolic substances-mediated resistance in the Solanaceae is significant for subsequent research to breed disease and pest resistant solanaceous plants. This review discusses the effects of phenolic substances on disease and pest resistance of the Solanaceae, and analyzes the resistance mechanisms mediated by these substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abd-Elgawad, Kabeil F, Molinari (2012) Different levels of anti-oxidant enzyme activities in tomato genotypes susceptible and resistant to root-knot nematodes. Nematropica 330–336

  • Abdelkhalek A, Aseel DG, Király L, Künstler A, Moawad H, Al-Askar AA (2022) Iinduction of systemic resistance to tobacco mosaic virus in tomato through foliar application of bacillus amyloliquefaciens strain TBorg1 culture filtrate. Viruses 14(8):1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abo-Elyousr KA, Ali EF, Sallam NM (2022) Alternative control of tomato wilt using the aqueous extract of Calotropis procera. Horticulturae 8(3):197

    Article  Google Scholar 

  • Akram W, Mahboob A, Javed AA (2013) Bacillus thuringiensis strain 199 can induce systemic resistance in tomato against Fusarium wilt. Eur J Microbiol 3(4):275–280

    Google Scholar 

  • Akram W, Ahmad A, Yasin NA, Anjum T, Ali B, Fatima S et al (2021) Mechanical strengthening and metabolic re-modulations are involved in protection against Fusarium wilt of tomato by B. subtilis IAGS174. J Plant Interact 16(1):411–421

    Article  CAS  Google Scholar 

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicol 2(1):1

    Article  Google Scholar 

  • Al-Ani RA, Adhab MA, Hassan KA (2011) Antiviral activity of Vit-org, 2-nitromethyl phenol and Thuja extract against eggplant blister mottled virus (EBMV). Afr J Microbiol Res 5(21):3555–3558

    CAS  Google Scholar 

  • Anu B, Saha T, Akhtar S, Kumari K (2021) Morphological and biochemical constituents influencing aphids and whiteflies tolerance in tomato genotypes. Bangladesh J Bot 50(3):483–489

    Article  Google Scholar 

  • Attia MS, El-Naggar HA, Abdel-Daim MM, El-Sayyad GS (2021) The potential impact of Octopus cyanea extracts to improve eggplant resistance against fusarium-wilt disease: in vivo and in vitro studies. Environ Sci Pollution Res 28:35854–35869

    Article  CAS  Google Scholar 

  • Attia MS, El-Wakil DA, Hashem AH, Abdelaziz AM (2022) Antagonistic effect of plant growth-promoting fungi against fusarium wilt disease in tomato: in vitro and in vivo study. Appl Biochem Biotechnol 194(11):5100–5118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attia MS, Elsayed SM, Abdelaziz AM, Ali MM (2023) Potential impacts of Ascophyllum nodosum, Arthrospira platensis extracts and calcium phosphite as therapeutic nutrients for enhancing immune response in pepper plant against Fusarium wilt disease. Biomass Convers Biorefinery 1–10

  • Beckman CH (2000) Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiological Mol Plant Pathol 57(3):101–110

    Article  CAS  Google Scholar 

  • Biswas SK, Prakesh H, Palat R, Bahar J (2019) Induced synthesis of defense molecules in tomato (Solamum Lycopercicum L.) against Fusarium wilt through plant extracts. Bangladesh J Bot 48(1):169–175

    Article  Google Scholar 

  • Campos L, López-Gresa MP, Fuertes D, Bellés JM, Rodrigo I, Lisón P (2019) Tomato glycosyltransferase Twi1 plays a role in flavonoid glycosylation and defence against virus. BMC Plant Biol 19:1–17

    Article  Google Scholar 

  • Canzoniere P, Francesconi S, Giovando S, Balestra G (2021) Antibacterial activity of tannins towards Pseudomonas syringae Pv. Tomato, and their potential as biostimulants on tomato plants. Phytopathologia Mediterranea 60(1):23–36

    Article  CAS  Google Scholar 

  • Chakraborty N, Chandra S, Sarkar A, Ghosh S, Dasgupta A, Acharya K (2023) An in planta approach for understanding defense responses in tomato plants against Fusarium oxysporum Schltdl. J Plant Pathol 105(1):129–136

    Article  Google Scholar 

  • Chen S, Shi, Liu X, Peng Z, Zheng H et al (2017) Odor, not performance, dictates Bemisia tabaci’s selection between healthy and virus infected plants. Front Physiol 8:146

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, Li X-w, He T-j, Li P-j, Liu Y, Zhou S-x et al (2021) Comparative biochemical and transcriptome analyses in tomato and eggplant reveal their differential responses to Tuta absoluta infestation. Genomics 113(4):2108–2121

    Article  Google Scholar 

  • Chen, Yao J, Wang F, Zhou Y, Chen K, Zhuang R et al (2010) Toxicity of three phenolic compounds and their mixtures on the gram-positive bacteria bacillus subtilis in the aquatic environment. Sci Total Environ 408(5):1043–1049

    Article  ADS  Google Scholar 

  • Chialva M, Salvioli di Fossalunga A, Daghino S, Ghignone S, Bagnaresi P, Chiapello M et al (2018) Native soils with their microbiotas elicit a state of alert in tomato plants. New Phytol 220(4):1296–1308

    Article  CAS  PubMed  Google Scholar 

  • Cory JS, Hoover K (2006) Plant-mediated effects in insect–pathogen interactions. Trends Ecol Evol 21(5):278–286

    Article  PubMed  Google Scholar 

  • Cui S, Chen, Zhang, Ge F (2016) Elevated O3 and TYLCV infection reduce the suitability of tomato as a host for the whitefly Bemisia tabaci. International Journal of Molecular Sciences 17(12): 1964

  • Dadáková K, Heinrichová T, Lochman J, Kašparovský T (2020) Production of defense phenolics in tomato leaves of different age. Molecules 25(21):4952

    Article  PubMed  PubMed Central  Google Scholar 

  • Dar SA, Rather B, Wani A, Ganie M (2017) Resistance against insect pests by plant phenolics and their derivative compounds. Chem Rev Lett 6(22):1073–1081

    Google Scholar 

  • Daradka HM, Saleem A, Obaid WA (2021) Antifungal effect of different plant extracts against phytopathogenic fungi Alternaria alternata and fusarium oxysporum isolated from tomato plant. Int J Pharm 33(31A):188–197

    Google Scholar 

  • Desmedt W, Jonckheere W, Nguyen VH, Ameye M, De Zutter N, De Kock K et al (2021) The phenylpropanoid pathway inhibitor piperonylic acid induces broad-spectrum pest and disease resistance in plants. Plant Cell Environ 44(9):3122–3139

    Article  CAS  PubMed  Google Scholar 

  • Dikilitas M, Guldur ME, Deryaoglu A, Ozcan E (2011) Antioxidant and oxidant levels of pepper (Capsicum annuum Cv.‘Charlee’) infected with pepper mild mottle virus. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39(2):58–63

    Article  CAS  Google Scholar 

  • Din N, Ahmad M, Siddique M, Ali A, Naz I, Ullah N et al (2016) Phytobiocidal management of bacterial wilt of tomato caused by Ralstonia solanacearum (Smith) Yabuuchi. Span J Agricultural Res 14(3):e1006–e1006

    Article  Google Scholar 

  • Djellout H, Raio A, Boutoumi H, Krimi Z (2020) Bacillus and Pseudomonas spp. strains induce a response in phenolic profile and enhance biosynthesis of antioxidant enzymes in Agrobacterium tumefaciens infected tomato plants. Eur J Plant Pathol 157:269–280

    Article  CAS  Google Scholar 

  • Dunkić V, Bezić N, Vuko E, Cukrov D (2010) Antiphytoviral activity of Satureja montana L. ssp. variegata (host) PW Ball essential oil and phenol compounds on CMV and TMV. Molecules 15(10):6713–6721

    Article  PubMed Central  Google Scholar 

  • El-Meniawi F, Rawash I, El-Gayar F, Hussein H (2015) Plant response to Bemisia tabaci infestation. Middle East J Appl Sci 5(4):1164–1173

    Google Scholar 

  • El-Sitiny MF, Omar HM, El-Shehawi AM, Elseehy MM, El-Tahan AM, El-Saadony MT et al (2022) Biochemical and molecular diagnosis of different tomato cultivars susceptible and resistant to Tuta absoluta (meyrick) infestation. Saudi J Biol Sci 29(4):2904–2910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elshafie HS, Camele I, Mohamed AA (2023) A Comprehensive review on the biological, agricultural and pharmaceutical properties of secondary metabolites based-plant origin. Int J Mol Sci 24(4):3266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewas M, Harlina PW, Shahzad R, Khames E, Ali F, Nishawy E et al (2022) Constitutive expression of SlMX1 gene improves fruit yield and quality, health-promoting compounds, fungal resistance and delays ripening in transgenic tomato plants. J Plant Interact 17(1):517–536

    Article  CAS  Google Scholar 

  • Fan L, Rui, Jiang N-h, Cai K-z (2018) Physiological response and phenolic metabolism in tomato (Solanum lycopersicum) mediated by silicon under Ralstonia solanacearum infection. J Integr Agric 17(10):2160–2171

    Article  CAS  Google Scholar 

  • Florencio-Ortiz V, Gruz J, Casas JL (2021) Changes in the free phenolic acid composition of pepper (Capsicum annuum L.) leaves in response to green peach aphid (Myzus persicae Sulzer) infestation. Arthropod-Plant Interact 15:329–336

    Article  CAS  Google Scholar 

  • Florez AB, Alvarez S, Zabala D, Brana AF, Salas JA, Mendez C (2015) Transcriptional regulation of mithramycin biosynthesis in Streptomyces argillaceus: dual role as activator and repressor of the PadR-like regulator MtrY. Microbiology 161(2):272–284

    Article  CAS  PubMed  Google Scholar 

  • Fu, Li C, Zhou X, Liu S, Wu F (2016) Physiological response and sulfur metabolism of the V. dahliae-infected tomato plants in tomato/potato onion companion cropping. Sci Rep 6(1):36445

    Article  ADS  Google Scholar 

  • Gayoso C, Pomar F, Novo-Uzal E, Merino F, de Martínez Ó (2010) The Ve-mediated resistance response of the tomato to Verticillium Dahliae involves H 2 O 2, peroxidase and lignins and drives PAL gene expression. BMC Plant Biol 10:1–19

    Article  Google Scholar 

  • Gazzurelli C, Carcelli M, Mazzeo PP, Mucchino C, Pandolfi A, Migliori A et al (2022) Exploiting the reducing properties of lignin for the development of an effective lignin@ Cu2O pesticide. Adv Sustainable Syst 6(8):2200108

    Article  CAS  Google Scholar 

  • Gebhardt C (2016) The historical role of species from the Solanaceae plant family in genetic research. Theoretical Appl Genet 129:2281–2294

    Article  Google Scholar 

  • Gordon TR (2017) Fusarium oxysporum and the Fusarium wilt syndrome. Phytopathology 55:23–39

    Article  CAS  Google Scholar 

  • Greff B, Sáhó A, Lakatos E, Varga L (2023) Biocontrol activity of aromatic and medicinal plants and their bioactive components against soil-borne pathogens. Plants 12(4):706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He N, Yang X, Jiao Y, Tian L, Zhao Y (2012) Characterisation of antioxidant and antiproliferative acidic polysaccharides from Chinese wolfberry fruits. Food Chem 133(3):978–989

    Article  CAS  Google Scholar 

  • Helmi A, Rashwan R (2015) Susceptibility of some solanaceous plant cultivars to sap-sucking insects infestation and their associated natural rnemies. J Plant Prot Pathol 6(5):763–781

    Google Scholar 

  • Hong JC, Momol MT, Ji P, Olson SM, Colee J, Jones JB (2011) Management of bacterial wilt in tomatoes with thymol and acibenzolar-S-methyl. Crop Prot 30(10):1340–1345

    Article  CAS  Google Scholar 

  • Hou, Zhang Z, Zhou (2020) Effects of Origanum vulgare essential oil and its two main components, carvacrol and thymol, on the plant pathogen. Botrytis Cinerea PeerJ 8:e9626

    Article  Google Scholar 

  • Huber D, Römheld V, Weinmann M (2012) Relationship between nutrition, plant diseases and pests. Marschner’s mineral nutrition of higher plants. Elsevier, pp 283–298

  • Huillet E, Velge P, Vallaeys T, Pardon P (2006) LadR, a new PadR-related transcriptional regulator from Listeria monocytogenes, negatively regulates the expression of the multidrug efflux pump MdrL. FEMS Microbiol Lett 254(1):87–94

    Article  CAS  PubMed  Google Scholar 

  • Husaini AM, Sakina A, Cambay SR (2018) Host–pathogen interaction in Fusarium oxysporum infections: where do we stand? Mol Plant Microbe Interact 31(9):889–898

    Article  CAS  PubMed  Google Scholar 

  • Imran M, Abo-Elyousr KA, Mousa MA, Saad MM (2023) Use of Trichoderma culture filtrates as a sustainable approach to mitigate early blight disease of tomato and their influence on plant biomarkers and antioxidants production. Frontiers in Plant Science 14

  • Jain R, Sharma A, Gupta S, Sarethy IP, Gabrani R (2011) Solanum nigrum: current perspectives on therapeutic properties. Altern Med Rev 16(1):78–85

    PubMed  Google Scholar 

  • Jamiołkowska A (2014) The role of some secondary metabolites in the health status of sweet pepper (Capsicum annuum L.) grown in the field. Acta Scientiarum Polonorum Hortorum Cultus 13(2):15–30

    Google Scholar 

  • Ji P, Momol M, Olson S, Pradhanang P, Jones J (2005) Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions. Plant Dis 89(5):497–500

    Article  CAS  PubMed  Google Scholar 

  • Jiao, Xie W, Zeng Y, Wang C, Liu B, Wang S et al (2018) Lack of correlation between host choice and feeding efficiency for the B and Q putative species of Bemisia tabaci on four pepper genotypes. J Pest Sci 91:133–143

    Article  Google Scholar 

  • Kashyap PL, Solanki MK, Kushwaha P, Kumar S, Srivastava AK (2020) Biocontrol potential of salt-tolerant Trichoderma and Hypocrea isolates for the management of tomato root rot under saline environment. J Soil Sci Plant Nutr 20:160–176

    Article  CAS  Google Scholar 

  • Kavitha R, Umesha S (2008) Regulation of defense-related enzymes associated with bacterial spot resistance in tomato. Phytoparasitica 36(2):144

    Article  CAS  Google Scholar 

  • Kirwa HK, Murungi LK, Beck JJ, Torto B (2018) Elicitation of differential responses in the root-knot nematode Meloidogyne incognita to tomato root exudate cytokinin, flavonoids, and alkaloids. J Agricultural Food Chem 66(43):11291–11300

    Article  CAS  Google Scholar 

  • Kisiriko M, Anastasiadi M, Terry LA, Yasri A, Beale MH, Ward JL (2021) Phenolics from medicinal and aromatic plants: Characterisation and potential as biostimulants and bioprotectants. Molecules 26(21):6343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knapp S, Bohs L, Nee M, Spooner DM (2004) Solanaceae—a model for linking genomics with biodiversity. Comp Funct Genomics 5(3):285–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koc E, ÜSTÜN AS (2011) Differential induction of phenylalanine ammonia lyase and phenolics in peppers (Capsicum annuum) in response to inoculation with Phytophthora capsici. Int J Agric Biology 13(6)

  • Konappa N, Krishnamurthy S, Siddaiah CN, Ramachandrappa NS, Chowdappa S (2018) Evaluation of biological efficacy of Trichoderma asperellum against tomato bacterial wilt caused by Ralstonia solanacearum. Egypt J Biol Pest Control 28:1–11

    Article  Google Scholar 

  • Korgan S, Wolski E, Cicore P, Suarez P, Capezio S, Huarte MA et al (2011) Solanum tarijense reaction to Phytophthora infestans and the role of plant defence molecules. Plant Breeding 130(2):231–236

    Article  CAS  Google Scholar 

  • Kotan R, Dadasoglu F, Kordali S, Cakir A, Dikbas N, Cakmakci R (2007) Antibacterial activity of essential oils extracted from some medicinal plants, carvacrol and thymol on Xanthomonas axonopodis Pv. Vesicatoria (Doidge) Dye causes bacterial spot disease on pepper and tomato. J Agricultural Technol 3(2):299–306

    Google Scholar 

  • Krastanov A, Alexieva Z, Yemendzhiev H (2013) Microbial degradation of phenol and phenolic derivatives. J Eng Life Sci 13(1):76–87

    Article  CAS  Google Scholar 

  • Kumar SP, Srinivasulu A, Babu KRJJ, o. P, Phytochemistry (2018) Symptomology of major fungal diseases on tomato and its management. J Pharmacognosy Phytochemistry 7(6):1817–1821

    CAS  Google Scholar 

  • Lattanzio V, Lattanzio VM, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry: Adv Res 661(2):23–67

    Google Scholar 

  • Lee M (2006) The Solanaceae: foods and poisons. Journal-Royal Coll Physicians Edinb 36(2):162

    CAS  Google Scholar 

  • Li W, Ruan P, Jiang (2010) Phenolics and plant allelopathy. Molecules 15(12):8933–8952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Zhu, Yang Z, Ding (2021) Caffeic acid in tobacco root exudate defends tobacco plants from infection by Ralstonia solanacearum. Front Plant Sci 12:690586

    Article  PubMed  PubMed Central  Google Scholar 

  • Lian H, Wei W, Wang D, Jia L, Yang X (2022) Effect of thymol on physical properties, antimicrobial properties and fresh-keeping application of cherry tomato of starch/PBAT extrusion blowing films. Food Sci Technol 42

  • Lobna H, Aymen EM, Hajer R, Naima MH-B, Najet H-R (2017) Biochemical and plant nutrient alterations induced by Meloidogyne Javanica and Fusarium oxysporum f. sp. radicis lycopersici co-infection on tomato cultivars with differing level of resistance to M. Javanica. Eur J Plant Pathol 148:463–472

    Article  CAS  Google Scholar 

  • López-Ráez JA, Flors V, García JM, Pozo M (2010) AM symbiosis alters phenolic acid content in tomato roots. Plant Signal Behav 5(9):1138–1140

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahmoud GA-E, Abdel-Sater MA, Al-Amery E, Hussein NA (2021) Controlling Alternaria cerealis MT808477 tomato phytopathogen by Trichoderma Harzianum and tracking the plant physiological changes. Plants 10(9):1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malarz J, Yudina YV, Stojakowska A (2023) Hairy root cultures as a source of phenolic antioxidants: simple phenolics, phenolic acids, phenylethanoids, and hydroxycinnamates. Int J Mol Sci 24(8):6920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal S, Das RK, Mishra S (2011) Differential occurrence of oxidative burst and antioxidative mechanism in compatible and incompatible interactions of Solanum lycopersicum and Ralstonia solanacearum. Plant Physiol Biochem 49(2):117–123

    Article  CAS  PubMed  Google Scholar 

  • Mandal, Kar I, Mukherjee AK, Acharya P (2013) Elicitor-induced defense responses in Solanum lycopersicum against Ralstonia solanacearum. Scientific World Journal 2013: 561056

  • Mardani-Talaee M, Nouri-Ganblani G, Razmjou J, Hassanpour M, Naseri B, Asgharzadeh A (2016) Effects of chemical, organic and bio-fertilizers on some secondary metabolites in the leaves of bell pepper (Capsicum annuum) and their impact on life table parameters of Myzus persicae (Hemiptera: Aphididae). J Econ Entomol 109(3):1231–1240

    Article  CAS  PubMed  Google Scholar 

  • Markakis EA, Fountoulakis MS, Daskalakis GC, Kokkinis M, Ligoxigakis EK (2016) The suppressive effect of compost amendments on Fusarium oxysporum f. sp. radicis-cucumerinum in cucumber and verticillium dahliae in eggplant. Crop Prot 79:70–79

    Article  Google Scholar 

  • Martinko K, Ivanković S, Lazarević B, Đermić E, Đermić D (2022) Control of early blight fungus (Alternaria alternata) in tomato by boric and phenylboronic acid. Antibiotics 11(3):320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Materska M, Perucka I (2005) Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L). J Agricultural food Chem 53(5):1750–1756

    Article  CAS  Google Scholar 

  • Mekam PN, Martini S, Nguefack J, Tagliazucchi D, Mangoumou GN, Stefani E (2019) Activity of extracts from three tropical plants towards fungi pathogenic to tomato (Solanum lycopersicum). Phytopathologia Mediterranea 58(3):573–586

    CAS  Google Scholar 

  • Michałowicz J, Duda W (2007) Phenols–sources and toxicity. J Pol J Environ Stud 16(3)

  • Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19(10):16240–16265

    Article  PubMed  PubMed Central  Google Scholar 

  • Min K, Freeman C, Kang H, Choi S-U (2015) The regulation by phenolic compounds of soil organic matter dynamics under a changing environment. BioMed Research International 2015

  • Mishra S, Jagadeesh KS, Krishnaraj PU, Prem S (2014) Biocontrol of tomato leaf curl virus (ToLCV) in tomato with chitosan supplemented formulations of Pseudomonas sp. under field conditions. Aust J Crop Sci 8(3):347–355

    Google Scholar 

  • Mohamad T, Khalil A (2014) Effect of pomegranate (Punica granatum L.) fruits peel on some phytopathogenic fungi and control of tomato damping-off. Egypt J Phytopathol 42(2):171–186

    Article  Google Scholar 

  • Mostafa YS, Alamri SA, Alrumman SA, Hashem M, Taher MA, Baka ZA (2022) In vitro and in vivo biocontrol of tomato Fusarium wilt by extracts from brown, red, and green macroalgae. Agriculture 12(3):345

    Article  CAS  Google Scholar 

  • Movva V, Pathipati UR (2017) Feeding-induced phenol production in Capsicum annuum L. influences Spodoptera litura F. larval growth and physiology. Arch Insect Biochem Physiol 95(1):e21387

    Article  Google Scholar 

  • Ngadze E, Icishahayo D, Coutinho TA, Van der Waals JE (2012) Role of polyphenol oxidase, peroxidase, phenylalanine ammonia lyase, chlorogenic acid, and total soluble phenols in resistance of potatoes to soft rot. Plant Dis 96(2):186–192

    Article  CAS  PubMed  Google Scholar 

  • Onkokesung N, Reichelt M, van Doorn A, Schuurink RC, van Loon JJ, Dicke M (2014) Modulation of flavonoid metabolites in Arabidopsis thaliana through overexpression of the MYB75 transcription factor: role of kaempferol-3, 7-dirhamnoside in resistance to the specialist insect herbivore Pieris brassicae. J Exp Bot 65(8):2203–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owen-Going TN, Beninger CW, Hall JC, Sutton J (2012) Infection by Pythium aphanidermatum increases production of phenolics in hydroponically grown peppers and predisposes healthy plants to root rot. Eur J Plant Pathol 132:341–352

    Article  CAS  Google Scholar 

  • Pacifico D, Musmeci S, del Pulgar JS, Onofri C, Parisi B, Sasso R et al (2019) Caffeic acid and α-chaconine influence the resistance of potato tuber to Phthorimaea operculella (Lepidoptera: Gelechiidae). Am J Potato Res 96:403–413

    Article  CAS  Google Scholar 

  • Pal S, Karmakar P, Chattopadhyay A, Ghosh SK (2021) Evaluation of tomato genotypes for resistance to whitefly (Bemisia tabaci Gennadius) and tomato leaf curl virus in eastern India. J Asia Pac Entomol 24(2):68–76

    Article  Google Scholar 

  • Panina Y, Fravel D, Baker C, Shcherbakova L (2007) Biocontrol and plant pathogenic fusarium oxysporum-induced changes in phenolic compounds in tomato leaves and roots. J Phytopathol 155(7–8):475–481

    Article  CAS  Google Scholar 

  • Panno S, Davino S, Caruso AG, Bertacca S, Crnogorac A, Mandić A et al (2021) A review of the most common and economically important diseases that undermine the cultivation of tomato crop in the Mediterranean basin. Agronomy 11(11):2188

    Article  Google Scholar 

  • Pappi P, Nikoloudakis N, Fanourakis D, Zambounis A, Delis C, Tsaniklidis G (2021) Differential triggering of the phenylpropanoid biosynthetic pathway key genes transcription upon cold stress and viral infection in tomato leaves. Horticulturae 7(11):448

    Article  Google Scholar 

  • Patel SJ, Subramanian R, Jha YS (2011) Biochemical and molecular studies of early blight disease in tomato. Phytoparasitica 39:269–283

    Article  CAS  Google Scholar 

  • Peng L, Yan Y, Yang CH, De Barro PJ, Wan FH (2013) Identification, comparison, and functional analysis of salivary phenol-oxidizing enzymes in Bemisia tabaci B and Trialeurodes vaporariorum. Entomol Exp Appl 147(3):282–292

    Article  CAS  Google Scholar 

  • Popoola A, Ganiyu S, Durojaiye S (2012) Antimicrobial efficacy of thymol in the management of bacterial wilt of tomato. J Agricultural Sci Environ 12(1):95–103

    Google Scholar 

  • Pourcel L, Routaboul J-M, Cheynier V, Lepiniec L, Debeaujon I (2007) Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci 12(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Prakash N, Vishunavat K, Khan GT, Prasad P (2021) SA, ABA and Pseudomonas fluorescens elicit defense responses in tomato against Alternaria blight. J Plant Biochem Biotechnol 30:13–25

    Article  CAS  Google Scholar 

  • Rai GK, Kumar R, Singh J, Rai P, Rai S (2011) Peroxidase, polyphenol oxidase activity, protein profile and phenolic content in tomato cultivars tolerant and susceptible to Fusarium oxsyporum f. sp. lycopersici. Pak J Bot 43(6):2987–2990

    CAS  Google Scholar 

  • Rajashekar CB (2023) Dual role of plant phenolic compounds as antioxidants and prooxidants. Am J Plant Sci 14(1):15–28

    Article  CAS  Google Scholar 

  • Rajput RS, Singh J, Singh P, Vaishnav A, Singh HB (2021) Influence of seed biopriming and vermiwash treatment on tomato plant’s immunity and nutritional quality upon Sclerotium rolfsii challenge inoculation. J Plant Growth Regul 40:1493–1509

    Article  CAS  Google Scholar 

  • Rusak G, Krajačić M, Pleše N (1997) Inhibition of tomato bushy stunt virus infection using a quercetagetin flavonoid isolated from Centaurea Rupestris L. Antiviral Res 36(2):125–129

    Article  CAS  PubMed  Google Scholar 

  • Sade D, Shriki O, Cuadros-Inostroza A, Tohge T, Semel Y, Haviv Y et al (2015) Comparative metabolomics and transcriptomics of plant response to Tomato yellow leaf curl virus infection in resistant and susceptible tomato cultivars. Metabolomics 11:81–97

    Article  CAS  Google Scholar 

  • Simmonds MS (2003) Flavonoid–insect interactions: recent advances in our knowledge. Phytochemistry 64(1):21–30

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Rai N, Singh M, Singh S, Srivastava K (2015) Selection of tomato genotypes resistant to tomato leaf curl virus disease using biochemical and physiological markers. J Agricultural Sci 153(4):646–655

    Article  CAS  Google Scholar 

  • Singh, Rai N, Singh R, Saha S, Rai R, Singh R (2017) Genetics of resistance to early blight disease in crosses of wild derivatives of tomato. Sci Hort 219:70–78

    Article  Google Scholar 

  • Sivakumar G, Rangeshwaran R, Yandigeri MS, Rajkumar R, Surabhi K (2017) Root priming with Bacillus spp. against bacterial wilt disease of tomato caused by Ralstonia solanacearum. Indian J Agric Sci 87(11):1453–1459

    CAS  Google Scholar 

  • Soliman W, Ibrahim M, El Baz H (2019) In vitro evaluation of Syzygium aromaticum L. ethanol extract as biocontrol agent against postharvest tomato and potato diseases. Egypt J Bot 59(1):81–94

    Google Scholar 

  • Soliman SA, Al-Askar AA, Sobhy S, Samy MA, Hamdy E, Sharaf OA et al (2023) Differences in pathogenesis-related protein expression and polyphenolic compound accumulation reveal insights into tomato–Pythium aphanidermatum interaction. Sustainability 15(8):6551

    Article  CAS  Google Scholar 

  • Srivastava M, Tiwari R, Sharma N (2013) Assessment of phenol and flavonoid content in the plant materials. New Biol Rep 2(2):163–166

    Google Scholar 

  • Steinkellner S, Mammerler R (2007) Effect of flavonoids on the development of Fusarium oxysporum f. sp. lycopersici. J Plant Interact 2(1):17–23

    Article  CAS  Google Scholar 

  • Su, Chen G, Mescher MC, Peng Z, Xie W, Wang S et al (2018) Whitefly aggregation on tomato is mediated by feeding-induced changes in plant metabolites that influence the behaviour and performance of conspecifics. Funct Ecol 32(5):1180–1193

    Article  Google Scholar 

  • Subhani MN, Sahi ST, Rehman A, Wakil W (2014) Effect of late blight caused by phytophthora infestans on phenolic contents of potato advanced lines/cultivars. Pakistan J Phytopathol 26(2):213–218

    Google Scholar 

  • Sun C, Cao J, Wang Y, Chen J, Huang L, Zhang H et al (2021) Ultrasound-mediated molecular self-assemble of thymol with 2-hydroxypropyl-β-cyclodextrin for fruit preservation. Food Chem 363:130327

    Article  CAS  PubMed  Google Scholar 

  • Tak Y, Kumar M (2020) Plant phenolics in sustainable agriculture 309–329

  • Toledo CA, Ponce F, Oliveira MD, Aires ES, Seabra S Júnior, Lima GPP et al (2021) Change in the physiological and biochemical aspects of tomato caused by infestation by cryptic species of Bemisia tabaci MED and MEAM1. Insects 12(12):1105

  • Umesha S (2006) Phenylalanine ammonia lyase activity in tomato seedlings and its relationship to bacterial canker disease resistance. Phytoparasitica 34:68–71

    Article  CAS  Google Scholar 

  • Vargas P, Farias GA, Nogales J, Prada H, Carvajal V, Barón M et al (2013) Plant flavonoids target P seudomonas syringae pv. Tomato DC 3000 flagella and type III secretion system. Environ Microbiol Rep 5(6):841–850

    Article  CAS  PubMed  Google Scholar 

  • Vu TT, Kim J-C, Choi YH, Choi GJ, Jang KS, Choi TH et al (2013) Effect of gallotannins derived from Sedum takesimense on tomato bacterial wilt. Plant Dis 97(12):1593–1598

    Article  CAS  PubMed  Google Scholar 

  • Vu TT, Kim H, Tran VK, Vu HD, Hoang TX, Han JW et al (2017) Antibacterial activity of tannins isolated from Sapium baccatum extract and use for control of tomato bacterial wilt. PLoS ONE 12(7):e0181499

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu F, Tanksley S (2010) Chromosomal evolution in the plant family Solanaceae. BMC Genomics 11(1):1–11

    Article  Google Scholar 

  • Xia, Guo Z, Yang Z, Han H, Wang S, Xu H et al (2021) Whitefly hijacks a plant detoxification gene that neutralizes plant toxins. Cell 184(7):1693–1705 e17

    Article  Google Scholar 

  • Yadav RK, Jayanthi P, Kumar M, Saravan P, Kumar V, Reddy KM (2020) Screening Chilli genotypes for whitefly (Bemisia tabaci Genn.) Resistance: a vector for Chilli leaf curl virus. Int J Chem Stud 8(1):971–979

    Article  Google Scholar 

  • Yang C, Liang Y, Qiu D, Zeng H, Yuan J, Yang X (2018) Lignin metabolism involves Botrytis Cinerea BcGs1-induced defense response in tomato. BMC Plant Biol 18:1–15

    Article  CAS  Google Scholar 

  • Yao P, Tong, Yang F, Xing G, Wang L et al (2019) Tomato plant flavonoids increase whitefly resistance and reduce spread of Tomato yellow leaf curl virus. J Econ Entomol 112(6):2790–2796

    CAS  PubMed  Google Scholar 

  • Zhang Z, Han, Li J, Shi X, Hikichi Y et al (2019) Involvement of a PadR regulator PrhP on virulence of Ralstonia solanacearum by controlling detoxification of phenolic acids and type III secretion system. Mol Plant Pathol 20(11):1477–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Zhang A, Li (2020) Epigallocatechin-3-gallate enhances tomato resistance to tobacco mosaic virus by modulating RBOH1-dependent H2O2 signaling. Plant Physiol Biochem 150:263–269

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Lu, Li P, Chen J, Shi Z et al (2022) Nano-Thymol emulsion inhibits Botrytis Cinerea to control postharvest gray mold on tomato fruit. Agronomy 12(12):2973

    Article  CAS  Google Scholar 

  • Zhang, Deng Q, Wang W, Zhang H, Chen O, Zeng K (2023) Epsilon-poly-L-lysine increases disease resistance of citrus against postharvest green mold by activating amino acid metabolism and phenolic compounds biosynthesis. Food Qual Saf 7:fyad010

    Article  Google Scholar 

  • Zhang, Li, Zhang, Wang, Qiu Q, Luo F et al (2017) Ferulic acid, but not all hydroxycinnamic acids, is a novel T3SS inducer of Ralstonia solanacearum and promotes its infection process in host plants under hydroponic condition. Front Plant Sci 8:1595

    Article  Google Scholar 

  • Zhou B, Chen Z, Du L, Xie Y, Zhang Q, Ye X (2011) Allelopathy of root exudates from different resistant eggplants to Verticillium Dahliae and the identification of allelochemicals. Afr J Biotechnol 10(42):8284–8290

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the Sheng Tongsheng Innovation Fund of Gansu Agricultural University [grant number GSAU-STS-2021-27]; the Doctoral Research Start-up Funds [grant number GAU-KYQD-2019-30]; the National Natural Science Foundation of China [grant number 32260755]; the Gansu Top Leading Talent Plan [grant number GSBJLJ-2021-14]; the Modern Silk Road Cold and Drought Agricultural Science and Technology Support Project [grant number GSLK-2021-6]; the Special Fund for Modern Agricultural Industrial Technology System [grant number CARS-23-C-07]; and the Central Government Guides Local Scientific and Technological Development Projects [grant number ZCYD-2021-6].

Author information

Authors and Affiliations

Authors

Contributions

Zeci Liu and Jihua Yu designed the manuscript. Jue Wang, Jie Wang, Zhibin Yue, and Bo Zhang downloaded and summarized the references. Jue Wang and Zeci Liu wrote the manuscript. Shilei Luo and Jihua Yu revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Jihua Yu or Zeci Liu.

Ethics declarations

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Communicated by Abdul Latif Khan.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, J., Yue, Z. et al. Disease and Pest Resistance through Phenolic Substances in the Solanaceae. J Plant Growth Regul (2024). https://doi.org/10.1007/s00344-024-11265-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00344-024-11265-3

Keywords

Navigation