Skip to main content
Log in

Signaling and Defence Mechanism of Jasmonic and Salicylic Acid Response in Pulse Crops: Role of WRKY Transcription Factors in Stress Response

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Jasmonic Acid (JA), Salicylic Acid (SA) and its derivatives are important phytohormones that play fundamental roles in the plant defence mechanisms against various biotic and abiotic stresses. These hormones are essential in enabling plants to respond and adapt to challenging environmental conditions. They serve as key players in various plant signalling pathways and exhibit both antagonistic and synergistic effects on each other. JA primarily functions in defence against pathogenic organisms and herbivores, while SA plays a crucial role in combating biotrophic pathogens. Apart from biotic stresses, studies have shown that the application of JA and SA can enhance the resistance of pulses to abiotic stresses such as drought, temperature extremes, metal toxicity, and salt stress, which could be achieved through the regulation of specific gene expression. Under such conditions, the magnitude of JA and SA is regulated through a complex signalling system, which includes coordinated actions of transcriptional and post-transcriptional regulation of enzymes, as well as modification of key proteins by other molecules. The WRKY70 transcription factor (TF) plays a significant role in the post-transcriptional regulation and modulation of genes such as NPR1, VSP1 VSP2, PR2, and PR10, which are associated with stimulating the plant defence response in the pulse crops. The regulation of JA and SA signalling pathways in pulse crops under stress conditions is complex, requiring a deeper understanding of the underlying mechanisms. Therefore, developing well-organized strategies for the exogenous application of JA/SA and its derivatives in pulses becomes crucial in mitigating the impact of these stresses. This paper sheds light on the recent understanding on mechanism and application of JA/SA, which could help in improving the resilience and defence mechanisms of pulse crops, leading to better stress tolerance and overall crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad P, Raja V, Ashraf M, Wijaya L, Bajguz A, Alyemeni MN (2021) Jasmonic acid (JA) and gibberellic acid (GA3) mitigated Cd-toxicity in chickpea plants through restricted cd uptake and oxidative stress management. Sci Rep 11:19768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambroise V, Legay S, Guerriero G, Hausman JF, Cuypers A, Sergeant K (2020) The roots of plant frost hardiness and tolerance. Plant Cell Physiol 61:3–20

    Article  CAS  PubMed  Google Scholar 

  • Anjum SA, Wang L, Farooq M, Khan I, Xue L (2011) Methyl jasmonate-induced alteration in lipid peroxidation, antioxidative defense system and yield in soybean under drought. J Agron Crop Sci 197:296–301

    Article  CAS  Google Scholar 

  • Ashfield T, Bocian A, Held D, Henk AD, Marek LF, Danesh D, Penuela S, Meksem K, Lightfoot DA, Young ND (2003) Genetic and physical localization of the soybean Rpg1-b disease resistance gene reveals a complex locus containing several tightly linked families of NBS-LRR genes. Mol Plant Microbe 16:817–826

    Article  CAS  Google Scholar 

  • Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Biol 43:83–116

    Article  CAS  Google Scholar 

  • Chakraborty J, Ghosh P, Sen S, Nandi AK, Das S (2019) CaMPK9 increases the stability of CaWRKY40 transcription factor which triggers defense response in chickpea upon Fusarium oxysporum f. sp. ciceri Race1 infection. Plant Mol Biol 100:411–431

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty J, Sen S, Ghosh P, Jain A, Das S (2020) Inhibition of multiple defense responsive pathways by CaWRKY70 transcription factor promotes susceptibility in chickpea under Fusarium oxysporum stress condition. BMC Plant Biol 20:1–23

    Article  Google Scholar 

  • Chern MS, Fitzgerald HA, Yadav RC, Canlas PE, Dong X, Ronald PC (2001) Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J 27:101–113

    Article  CAS  PubMed  Google Scholar 

  • Choudhary AK, Sultana R, Vales MI, Saxena KB, Kumar RR, Kumar PR (2018) Integrated physiological and molecular approaches to improvement of abiotic stress tolerance in two pulse crops of the semi-arid tropics. Crop J 6:99–114

    Article  Google Scholar 

  • Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 413:217–226

    Article  CAS  PubMed  Google Scholar 

  • Debnath S, Ramakrishnan RS, Kumawat RK, Vengavasi K, Kumar A, Sharma R, Upadhyay A, Babbar A, Samaiya RK (2022) Plant growth regulator mediated improved leaf area development and dry matter production under late sown high temperature stress condition in chickpea. BFAIJ 14(4): 331–342

    CAS  Google Scholar 

  • Delessert C, Kazan K, Wilson IW, van der Straeten D, Manners J, Dennis ES, Dolferus R (2005) The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J 43:745–757

    Article  CAS  PubMed  Google Scholar 

  • Devoto A, Turner JG (2005) Jasmonate-regulated Arabidopsis stress signalling network. Physiol Plant 123:161–172

    Article  CAS  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Ebbs FH, Bender RA, Sticklen MB (1977) Jasmonic acid stimulation of a lectin in suspension cultures of soybean. Plant Physiol 60:425–428

    Google Scholar 

  • El-Maarouf-Bouteau H, Sajjad Y, Bazin J, Langlade N, Cristescu SM, Balzergue S, Bailly C (2019) Salicylic acid increases Arabidopsis tolerance to high temperatures and their combination with drought or salinity stresses. Plant Cell Environ 42:1723–1734

    Google Scholar 

  • El-Taher AM, Abd El-Raouf HS, Osman NA, Azoz SN, Omar MA, Elkelish A, Abd El-Hady MAM (2022) Effect of salt stress and foliar application of salicylic acid on morphological, biochemical, anatomical, and productivity characteristics of cowpea (Vigna unguiculata L.) Plants. Plants 11(1):115

    Article  CAS  Google Scholar 

  • Fan L, Wang Q, Lv J, Gao L, Zuo J, Shi J (2016) Amelioration of postharvest chilling injury in cowpea (Vigna sinensis) by methyl jasmonate (MeJA) treatments. Sci Hortic 203:95–101

    Article  CAS  Google Scholar 

  • Faoro F, Maffi D, Cantu D, Iriti M (2008) Chemical-induced resistance against powdery mildew in barley: the effects of chitosan and benzothiadiazole. Biocontrol 53:387–401

    Article  CAS  Google Scholar 

  • Farheen J, Mansoor S, Abideen Z (2018) Exogenously applied salicylic acid improved growth, photosynthetic pigments and oxidative stability in Mungbean seedlings (Vigna radiata) at salt stress. Pak J Bot 50:901–912

    CAS  Google Scholar 

  • Farjam S, Siosemardeh A, Kazemi-Arbat H, Yarnia M, Rokhzadi A (2014) Response of chickpea (Cicer arietinum L.) to exogenous salicylic acid and ascorbic acid under vegetative and reproductive drought stress conditions. J Appl Bot Food 87:80–86

    Google Scholar 

  • Feys BJF, Benedetti CE, Penfold CN, Turner JG (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6:751–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueroa P, Browse J (2015) Male sterility in Arabidopsis induced by overexpression of a MYC5-SRDX chimeric repressor. Plant J 81:849–860

    Article  CAS  PubMed  Google Scholar 

  • Friedrich L, Vernooij B, Gaffney T, Morse A, Ryals J (1997) Characterization of tobacco plants expressing a bacterial salicylate hydroxylase gene. Plant Mol Biol 34:545–552

    Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E (1987) Requirement of salicylic acid for the induction of systemic acquired resistance. Sci 235:895–898

    Google Scholar 

  • Gallego SM, Pena LB, Bracia RA, Azpilicueta CE, Lannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Article  CAS  Google Scholar 

  • Gatz C (2013) From pioneers to team players: TGA transcription factors provide a molecular link between different stress pathways. Mol Plant-Microb Interact 26:151–159

    Article  CAS  Google Scholar 

  • Gharib FA, Hegazi AZ (2010) Salicylic acid ameliorates germination, seedling growth, phytohormone and enzymes activity in bean (Phaseolus vulgaris L.) under cold stress. J Am Sci 6:675–683

    Google Scholar 

  • Gornik K, Badowiec A, Weidner S (2014) The effect of seed conditioning, short-term heat shock and salicylic, jasmonic acid or brasinolide on sunflower (Helianthus annuus L.) chilling resistance and polysome formation. Acta Physiol Plant 36:2547–2554

    Article  CAS  Google Scholar 

  • Hamazaki J, Sasaki K, Kuroda Y, Suda H (1966) The structure of jasmonic acid. Tetrahedron Lett 7(26):2899–2904

    Google Scholar 

  • Hassan MA, Xiang C, Farooq M, Muhammad N, Yan Z, Hui X, Yuanyuan K, Bruno AK, Lele Z, Jincai L (2021) Cold stress in wheat: plant acclimation responses and management strategies. Front Plant Sci 12:1234

    Article  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2007) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 59:1–16

    Google Scholar 

  • He X, Wang C, Wang H, Li L, Wang C (2020) The function of MAPK cascades in response to various stresses in horticultural plants. Front Plant Sci 11:952

    Article  PubMed  PubMed Central  Google Scholar 

  • Hesse A, Muller F (1899) Ueber ätherisches Jasminblüthenöl I. Berichte Dtsch Chem Ges 32:565–574

    Article  CAS  Google Scholar 

  • Ilyas N, Gull R, Mazhar R, Saeed M, Kanwal S, Shabir S, Bibi F (2017) Influence of salicylic acid and jasmonic acid on wheat under drought stress. Commun Soil Sci Plant Anal 48:2715–2723

    CAS  Google Scholar 

  • Jaskiewicz M, Conrath U, Peterhänsel C (2011) Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 12:50–55

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, He S (2010) Prolonging the lifespan of plants: the role of inorganic polyphosphate. J Plant Growth Regul 29:271–288

    Google Scholar 

  • Joshi R, Ramawat N, Jha J, Durgesh K, Singh M, Talukdar A, Tomar Singh D (2021) Salt stress in pulses: a learning from global research on salinity in crop plants. Indian J Genet 81:159–185

    CAS  Google Scholar 

  • Kapale VP, Patel C, Verma AK, Srivastava RM, Pandey D, Nautiyal MK, Agrawal S (2022) Effect of seed priming with salicylic acid and methyl jasmonate on germination and primary root length of cowpea genotypes. J Pharm Innov 11(6):2085–2088

    Article  Google Scholar 

  • Kaur H, Hussain SJ, Kaur G, Poor P, Alamri S, Siddiqui MH et al (2022) Salicylic acid improves nitrogen fixation, growth, yield and antioxidant defence mechanisms in chickpea genotypes under salt stress. J Plant Growth Regul. https://doi.org/10.1007/s00344-022-10592-7

    Article  Google Scholar 

  • Kaushik S, Sharma P, Kaur G, Singh AK, Al-Misned FA, Shafik HM, Sirhindi G (2022) Seed priming with methyl jasmonate mitigates copper and cadmium toxicity by modifying biochemical attributes and antioxidants in Cajanus cajan. Saudi J Biol Sci 29:721–729

    Article  CAS  PubMed  Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20:219–229

    Article  CAS  PubMed  Google Scholar 

  • Khan W, Prithiviraj B, Donald SL (2003) Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 160:485–492

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Syeed S, Nazar R, Anjum NA (2012) An insight into the role of salicylic acid and jasmonic acid in salt stress tolerance. In: Khan NA, Nazar R, Iqbal N, Anjum NA (eds) Phytohormones and abiotic stress tolerance in plants. Springer, London, pp 277–300. https://doi.org/10.1007/978-3-642-25829-9_12

    Chapter  Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem 80:67–74. https://doi.org/10.1016/j.plaphy.2014.03.026

    Article  CAS  PubMed  Google Scholar 

  • Khan M, Fatma M, Tasir SP, Naser AA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci Plant Physiol 6:00462

    Google Scholar 

  • Khan MI, Jahan B, AlAjmi MF, Rehman MT, Iqbal N, Irfan M, Sehar Z, Khan NA (2021) Crosstalk of plant growth regulators protects photosynthetic performance from arsenic damage by modulating defense systems in rice. Ecotoxicol Environ Saf 1(222):112535

    Article  Google Scholar 

  • Konda AK, Sabale PR, Soren KR, Subramaniam SP, Singh P, Rathod S, Chaturvedi SK, Singh NP (2019) Systems biology approaches reveal a multi-stress responsive WRKY transcription factor and stress associated gene co-expression networks in chickpea. Curr Bioinform 14:591–601

    Article  CAS  Google Scholar 

  • Kuc J, Strobel N (1971) Induced systemic resistance to anthracnose in cucumber by Pseudomonas lachrymans and Colletotrichum lagenarium. Nature 229:65–67

    Google Scholar 

  • Kumar RR, Karajol K, Naik GR (2011) Effect of polyethylene glycol induced water stress on physiological and biochemical responses in pigeonpea (Cajanus cajan L. Millsp.). Recent Res Sci Tech 3(1):148

    Google Scholar 

  • Kumar G, Bajpai R, Sarkar A, Mishra RK, Kumar Gupta V, Singh HB, Sarma BK (2019) Identification, characterization, and expression profiles of Fusarium udum stress-responsive WRKY transcription factors in Cajanus cajan under the influence of NaCl stress and Pseudomonas fluorescens OKC. Sci Rep 9:14344

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawton KA, Weymann K, Friedrich L, Vernooij B, Uknes S, Ryals J (1991) Systemic acquired resistance in Arabidopsis requires salicylic acid at a specific time point. Plant Cell 3(7):783–790

    Google Scholar 

  • Leroux H (1830) Discovery of Salicine. J Chim Med 6:340–432

    Google Scholar 

  • Li T, Hu Y, Du X, Tang H, Shen C, Wu J (2014) Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. merrillii seedlings by activating photosynthesis and enhancing antioxidant systems. PLoS ONE 9:e109492

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma F, Zhou H, Yang H, Huang D, Xing W, Wu B, Li H, Hu W, Song S, Xu Y (2024) WRKY transcription factors in passion fruit analysis reveals key PeWRKYs involved in abiotic stress and flavonoid. Int J Biol Macromol 256(1). https://doi.org/10.1016/j.ijbiomac.2023.128063

  • Maksymiec W, Wianowska D, Dawidowicz AL, Radkiewicz S, Mardarowicz M, Krupa Z (2005) The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. J Plant Physiol 162:1338–1346

    Article  CAS  PubMed  Google Scholar 

  • Mandal S, Mitra A, Mallick N (2008) Biochemical characterization of oxidative burst during interaction between Solanum lycopersicum and Fusarium oxysporum f. sp. lycopersici. Physiol Mol Plant Path 72:56–61

    Article  CAS  Google Scholar 

  • Matos MKS, Benko-Iseppon AM, Bezerra-Neto JP, Ferreira-Neto JRC, Wang Y, Liu H, Pandolfi V, Amorim LLB, Willadino L, Vale Amorim TC, Kido EA, Vianello RP, Timko MP, Brasileiro-Vidal AC (2022) The WRKY transcription factor family in cowpea: genomic characterization and transcriptomic profiling under root dehydration. Gene 823:146377. https://doi.org/10.1016/j.gene.2022.146377

    Article  CAS  PubMed  Google Scholar 

  • McDowell JM, Woffenden BJ (2003) Plant disease resistance gene: recent insights and potential application. Trends Biotechnol 21(4):178–183

    Article  CAS  PubMed  Google Scholar 

  • Metraux JP, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J (1989) Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250:1004–1006

    Article  Google Scholar 

  • Mohamed HI, Latif HH (2017) Improvement of drought tolerance of soybean plants by using methyl jasmonate. Physiol Mol Biol Plants 23:545–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohi-Ud-Din M, Talukder D, Rohman M, Ahmed JU, Jagadish SVK, Islam T, Hasanuzzaman M (2021) Exogenous application of methyl jasmonate and salicylic acid mitigates drought-induced oxidative damages in french bean (Phaseolus vulgaris L). Plants 10:2066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahakpam S, Shah K, Kundu M, Heikham RS (2021) Role of phytohormones as master regulators during the abiotic stress. Stress tolerance in horticultural crop. Wood head publishing, Elsevier, Sawston, pp 347–369

    Chapter  Google Scholar 

  • Ndamukong I, Abdallat AA, Thurow C, Fode B, Zander M, Weigel R, Gatz C (2010) SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant J 50:128–139

    Article  Google Scholar 

  • Neupane S, Ma Q, Mathew FM, Varenhorst AJ, Andersen EJ, Nepal MP (2018) Evolutionary divergence of TNL disease-resistant proteins in soybean (Glycine max) and common bean (Phaseolus vulgaris). Biochem Genet 56:397–422

    Article  CAS  PubMed  Google Scholar 

  • Niki T, Mitsuhara I, Seo S, Ohtsubo N, Ohashi Y (1998) Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol 39:500–507

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Bio 49:249–279

    Article  CAS  Google Scholar 

  • Pandey SP, Srivastava S, Goel R, Lakhwani D, Singh P, Asif MH, Sane AP (2017) Simulated herbivory in chickpea causes rapid changes in defense pathways and hormonal transcription networks of JA/ethylene/GA/auxin within minutes of wounding. Sci Rep 7:44729

    Article  PubMed  PubMed Central  Google Scholar 

  • Patil DB, Shewale AB, Bhamburdekar SB (2016) Influence of salicylic acid on seed germination of pigeon pea (Cajanus cajan L). Int J Eng Res Technol 3(8):135–137

    Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Bio 28:489–521

    Article  CAS  Google Scholar 

  • Pieterse CMJ, De Jonge R, Berendsen RL (2018) The soil-borne supremacy. Trends Plant Sci 23:549–550

    Google Scholar 

  • Piria R (1838) Sulla salicina e sulla saligenina e sulle reazioni loro. Annali Di CHhimica e Di Fiscia 69:185–194

    Google Scholar 

  • Purayannur S, Kumar K, Kaladhar VC, Verma PK (2017) Phylogenomic analysis of MKKs and MAPKs from 16 legumes and detection of interacting pairs in chickpea divulge MAPK signalling modules. Sci Rep 7:5026

    Article  PubMed  PubMed Central  Google Scholar 

  • Radwan MA, Fayez KA (1976) Salicylic acid: a inducing factor for the production of phenolic compounds in tobacco leaves infected with tobacco mosaic virus. Science 193:929–930

    Google Scholar 

  • Ramegowda V, Senthil M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54

    Article  CAS  PubMed  Google Scholar 

  • Raskin I (2001) Salicylate, a new plant hormone. Plant Physiol 127:1439–1442

    Google Scholar 

  • Ruan J, Zhou Y, Zhou M, Yan J, Khurshid M, Weng W, Cheng J, Zhang K (2019) Jasmonic acid signaling pathway in plants. Int J Mol Sci 20(10):2479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruzicka L, Uber PM (1933) Jasminriechstoffe I Die Konstitution des Jasmons. Helv Chim Acta 16:1208–1214

    Article  CAS  Google Scholar 

  • Sadeghipour O (2017) Amelioration of salinity tolerance in cowpea plants by seed treatment with methyl jasmonate. Legume Res 40:1100–1106

    Google Scholar 

  • Sairam RK, Rao KV, Srivastava GC (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163:1037–1046

    Article  CAS  Google Scholar 

  • Sayyari M, Babalar M, Kalantari S, Martínez-Romeroa D, Guilléna F, Serranob M, Valeroa D (2010) Vapour treatments with methyl salicylate or methyl jasmonate alleviated chilling injury and enhanced antioxidant potential during postharvest storage of pomegranates. Food Chem 124:964–970

    Article  Google Scholar 

  • Senaratna T, Touchell D, Bunn E, Dixon K (2000) Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161

    Article  CAS  Google Scholar 

  • Seo S, Katou S, Seto H, Gomi K, Ohashi Y (2007) The mitogen-activated protein kinases WIPK and SIPK regulate the levels of jasmonic and salicylic acids in wounded tobacco plants. Plant J 49:899–909

    Article  CAS  PubMed  Google Scholar 

  • Seybold H, Trempel F, Ranf S, Scheel D, Romeis T, Lee J (2014) Ca2+ signalling in plant immune response: from pattern recognition receptors to Ca2+ decoding mechanisms. New Phytol 204:782–790

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, Bali AS, Handa N, Kapoor D, Bhardwaj R, Zheng B (2019) Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9:285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Kumar P, Verma V, Sharma R, Bhargava B, Irfan M (2020) Understanding plant stress memory response for abiotic stress resilience: molecular insights and prospects. Plant Physiol Biochem 15(179):10–24

    Google Scholar 

  • Sharma M, Irfan M, Kumar A, Kumar P, Datta A (2022) Recent insights into plant circadian clock response against abiotic stress. J Plant Growth Regul 41(8):3530–3543

    Article  CAS  Google Scholar 

  • Sheteiwy MS, Shao H, Qi W, Daly P, Sharma A, Shaghaleh H, Hamoud YA, El-Esawi MA, Pan R, Wan Q, Lu H (2021) Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings. J Sci Food Agric. https://doi.org/10.1002/jsfa.10822

  • Shim JS, Jung C, Lee S, Min K, Lee YW, Choi Y, Lee JS, Song JT, Kim JK, Choi YD (2013) AtMYB44 regulates WRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling. Plant J 73:483–495. https://doi.org/10.1111/tpj.12051

    Article  CAS  PubMed  Google Scholar 

  • Shuangcheng H, Fang Z, Yuanchang M, Rong M, Ankang G, Shixiang W, Jianjun W, Zijin L, Yuan G, Mingxun C (2023) The MYB59 transcription factor negatively regulates salicylic acid- and jasmonic acid-mediated leaf senescence. Plant Physiol 192:488–503

    Article  Google Scholar 

  • Singh A, Nath O, Singh S, Kumar S, Singh SK (2017) Genome-wide identification of the MAPK gene family in chickpea and expression analysis during development and stress response. Plant Gene 13:25–35

    Article  Google Scholar 

  • Singh D, Singh CK, Taunk J, Jadon V, Pal M, Gaikwad K (2019) Genome wide transcriptome analysis reveals vital role of heat responsive genes in regulatory mechanisms of lentil (Lens culinaris Medikus). Sci Rep 9(1):12976

    Article  PubMed  PubMed Central  Google Scholar 

  • Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843

    Article  CAS  PubMed  Google Scholar 

  • Song H, Sun W, Yang G, Sun J (2018) WRKY transcription factors in legumes. BMC Plant Biol 18:243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spoel SH, Loake GJ (2011) Redox-based protein modifications: the missing link in plant immune signalling. Curr Opin Plant Biol 14:358–364

    Article  CAS  PubMed  Google Scholar 

  • Stone E (1763) An account of the success of the bark of the willow in the cure of the ague. Philos Trans R Soc 53:195–200

    Google Scholar 

  • Sultana R, Chaudhary AK, Pal AK, Saxena AK, Bishun KB, Prasad D, Singh RG (2014) Abiotic stresses in major pulses: current status and strategies. In: Gaur RK, Sharma P (eds) Approaches to plant stress and their management. Springer, New Delhi, pp 173–190

    Chapter  Google Scholar 

  • Sultana R, Saxena KB, Kumar RR, Kumar D, Kirti M (2021) Pigeonpea. In: Pratap A, Gupta S (eds) The beans and the peas from orphan to mainstream crops. Elsevier, Amsterdam, pp 217–240

    Google Scholar 

  • Suman S, Bagal D, Jain D, Singh R, Singh IK, Singh A (2021) Biotic stresses on plants: reactive oxygen species generation and antioxidant mechanism, Chapter 14. In: Aftab T, Hakeem KR (eds) Frontiers in plant-soil interactions. Academic Press, New York, pp 381–411

    Chapter  Google Scholar 

  • Sytar O, Kumari P, Yadav S, Brestic M, Rastogi A (2019) Phytohormone priming: regulator for heavy metal stress in plants. J Plant Growth Regul 38:739–752

    Article  CAS  Google Scholar 

  • Szepesi A, Csiszár J, Gémes K, Horváth E, Horváth F, Simon ML (2009) Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. J Plant Physiol 166:914–925

    Article  CAS  PubMed  Google Scholar 

  • Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17:260–270

    Article  CAS  PubMed  Google Scholar 

  • Walters D, Walsh D, Newton A, Lyon G (2005) Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology 95:1368–1373

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Mostafa S, Zeng W, Jin B (2021) Function and mechanism of Jasmonic acid in plant responses to abiotic and biotic stresses. Int J Mol Sci 22:8568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waqas M, Azhar MT, Rana IA, Azeem F, Ali MA, Nawaz MA (2019) Genome-wide identification and expression analyses of WRKY transcription factor family members from chickpea (Cicer arietinum l.) reveal their role in abiotic stress-responses. Genes Genomics 41:467–481. https://doi.org/10.1007/s13258-018-00780-9

    Article  CAS  PubMed  Google Scholar 

  • War AR, Paulraj MG, War MY, Ignacimuthu S (2011) Role of salicylic acid in induction of plant defense system in chickpea (Cicer arietinum L). Plant Signal Behav 6(11):1787–1792. https://doi.org/10.4161/psb.6.11.17685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wassie M, Zhang W, Zhang Q, Ji K, Cao L, Chen L (2020) Exogenous salicylic acid ameliorates heat stress-induced damages and improves growth and photosynthetic efficiency in alfalfa (Medicago sativa L.). Ecotoxicol Environ Saf 191:110206

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Hause B (2006) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2000 review in Annals of Botany. Ann Bot 100:681–697

    Article  Google Scholar 

  • Wasternack C, Song S (2017) Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J Exp Bot 68:1303–1321

    CAS  PubMed  Google Scholar 

  • Xue R, Zhang B (2007) Increased endogenous methyl jasmonate altered leaf and root development in transgenic soybean plants. J Genet Genom 34:339–346

    Article  CAS  Google Scholar 

  • Yang YX, Ahammed GJ, Wu C, Fan SY, Zhou YH (2015) Crosstalk among jasmonate salicylate and ethylene signaling pathways in plant disease and immune responses. Curr Protein Pept Sci 16(5):450–461

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Li YM, Zhang Y, Dong YL, Wang XJ, Wei GR, Huang LL, Kang ZS (2010) Cloning and characterization of a pathogenesis-related protein gene TaPR10 from wheat induced by stripe rust pathogen. Agric Sci China 9:549–556

    Article  Google Scholar 

  • Zhu HY, Yang SM, Tang F, Gao MQ, Krishnan HB (2010) R gene-controlled host specificity in the legume-rhizobia symbiosis. Proc Natl Acad Sci 107:18735–18740

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The guidance, scientific advice, and support of Prof K. B. Saxena from International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), India is duly acknowledged to finalize this review article.

Author information

Authors and Affiliations

Authors

Contributions

RS: Responsible for over all concept development, structured and wrote article. ZI: helped in making diagram. RRK and RB: wrote part of biotechtechnological aspect. VSB and SN: wrote part of physiological aspects. Other helped in editing and proof reading.

Corresponding authors

Correspondence to Rafat Sultana or Mohammed Wasim Siddiqui.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Handling Editor: Mohammad Irfan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultana, R., Imam, Z., Kumar, R.R. et al. Signaling and Defence Mechanism of Jasmonic and Salicylic Acid Response in Pulse Crops: Role of WRKY Transcription Factors in Stress Response. J Plant Growth Regul (2024). https://doi.org/10.1007/s00344-023-11203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00344-023-11203-9

Keywords

Navigation