Skip to main content
Log in

Genome-wide identification and expression analyses of WRKY transcription factor family members from chickpea (Cicer arietinum L.) reveal their role in abiotic stress-responses

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

WRKY proteins play a vital role in the regulation of several imperative plant metabolic processes and pathways, especially under biotic and abiotic stresses. Although WRKY genes have been characterized in various major crop plants, their identification and characterization in pulse legumes is still in its infancy. Chickpea (Cicer arietinum L.) is the most important pulse legume grown in arid and semi-arid tropics.

Objective

In silico identification and characterization of WRKY transcription factor-encoding genes in chickpea genome.

Methods

For this purpose, a systematic genome-wide analysis was carried out to identify the non-redundant WRKY transcription factors in the chickpea genome.

Results

We have computationally identified 70 WRKY-encoding non-redundant genes which were randomly distributed on all the chickpea chromosomes except chromosome 8. The evolutionary phylogenetic analysis classified the WRKY proteins into three major groups (I, II and III) and seven sub-groups (IN, IC, IIa, IIb, IIc, IId and IIe). The gene structure analysis revealed the presence of 2–7 introns among the family members. Along with the presence of absolutely conserved signatory WRKY domain, 19 different domains were also found to be conserved in a group-specific manner. Insights of gene duplication analysis revealed the predominant role of segmental duplications for the expansion of WRKY genes in chickpea. Purifying selection seems to be operated during the evolution and expansion of paralogous WRKY genes. The transcriptome data-based in silico expression analysis revealed the differential expression of CarWRKY genes in root and shoot tissues under salt, drought, and cold stress conditions. Moreover, some of these genes showed identical expression pattern under these stresses, revealing the possibility of involvement of these genes in conserved abiotic stress–response pathways.

Conclusion

This genome-wide computational analysis will serve as a base to accelerate the functional characterization of WRKY TFs especially under biotic and abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acharjee S, Sarmah BK (2013) Biotechnologically generating ‘super chickpea’ for food and nutritional security. Plant Sci 207:108–116

    Article  CAS  PubMed  Google Scholar 

  • Ali L, Madrid E, Varshney R, Azam S, Millan T, Rubio J, Gil J (2014) Mapping and identification of a Cicer arietinum NSP2 gene involved in nodulation pathway. Theor Appl Genet 127:481–488

    Article  CAS  PubMed  Google Scholar 

  • Ali MA et al (2018) Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis. J Plant Physiol 226:12–21

    Article  CAS  PubMed  Google Scholar 

  • Bailey TL et al (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas S, Akey JM (2006) Genomic insights into positive selection. Trends Genet 22:437–446

    Article  CAS  PubMed  Google Scholar 

  • Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brand LH, Fischer NM, Harter K, Kohlbacher O, Wanke D (2013) Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and in vitro binding assays. Nucleic Acids Res 41:9764–9778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai X et al (2013) Genome-wide analysis of plant-specific Dof transcription factor family in tomato. J Integr Plant Biol 55:552–566

    Article  CAS  PubMed  Google Scholar 

  • Cai C, Niu E, Du H, Zhao L, Feng Y, Guo W (2014) Genome-wide analysis of the WRKY transcription factor gene family in Gossypium raimondii and the expression of orthologs in cultivated tetraploid cotton. Crop J 2:87–101

    Article  Google Scholar 

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L, Yang Y, Liu C, Zheng Y, Xu M, Wu N, Sheng J, Shen L (2015) Characterization of WRKY transcription factors in Solanum lycopersicum reveals collinearity and their expression patterns under cold treatment. Biochem Biophys Res Commun 464:962–968

    Article  CAS  PubMed  Google Scholar 

  • da Silva EG, Ito TM, de Souza SGH (2017) ‘In silico’genome-wide identification and phylogenetic analysis of the WRKY transcription factor family in sweet orange (‘Citrus sinensis’). Aust J Crop Sci 11:716

    Article  CAS  Google Scholar 

  • de Almeida DSM et al (2017) Genome-wide identification and characterization of cacao WRKY transcription factors and analysis of their expression in response to witches’ broom disease. PLoS ONE 12:e0187346

    Article  CAS  Google Scholar 

  • Ding M, Chen J, Jiang Y, Lin L, Cao Y, Wang M, Zhang Y, Rong J, Ye W (2015) Genome-wide investigation and transcriptome analysis of the WRKY gene family in Gossypium. Mol Genet Genom 290:151–171

    Article  CAS  Google Scholar 

  • Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21–37

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T (2006) Dissecting the WRKY web of plant defense regulators. PLoS Pathog 2:e126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Garg R, Bhattacharjee A, Jain M (2015) Genome-scale transcriptomic insights into molecular aspects of abiotic stress responses in chickpea. Plant Mol Biol Rep 33:388–400

    Article  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) Proteomics protocols handbook. Springer, New York, pp 571–607

    Chapter  Google Scholar 

  • Giacomelli JI, Weigel D, Chan RL, Manavella PA (2012) Role of recently evolved miRNA regulation of sunflower HaWRKY6 in response to temperature damage. New Phytol 195:766–773

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Qiu L-J (2013) Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics. PLoS ONE 8:e76809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han Y, Ding T, Su B, Jiang H (2016) Genome-wide identification, characterization and expression analysis of the chalcone synthase family in maize. Int J Mol Sci 17:161

    Article  CAS  PubMed Central  Google Scholar 

  • Hu B, Jin J, Guo A-Y, Zhang H, Luo J, Gao G (2014) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang X, Li K, Xu X, Yao Z, Jin C, Zhang S (2015) Genome-wide analysis of WRKY transcription factors in white pear (Pyrus bretschneideri) reveals evolution and patterns under drought stress. BMC Genom 16:1104

    Article  CAS  Google Scholar 

  • Ishiguro S, Nakamura K (1994) Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato. Mol Gen Genet MGG 244:563–571

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Jeena G (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:715–729

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Deyholos MK (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 69:91–105

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Yu D (2009) Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid. BMC Plant Biol 9:96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin J, Tian F, Yang D-C, Meng Y-Q, Kong L, Luo J, Gao G (2016) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. https://doi.org/10.1093/nar/gkw982

    Article  PubMed  PubMed Central  Google Scholar 

  • Jing Z, Liu Z (2018) Genome-wide identification of WRKY transcription factors in kiwifruit (Actinidia spp.) and analysis of WRKY expression in responses to biotic and abiotic stresses. Gene Genom 40:429–446

    Article  CAS  Google Scholar 

  • Johnson CS, Kolevski B, Smyth DR (2002) TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14:1359–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knudsen B, Knudsen T, Flensborg M, Sandmann H, Heltzen M, Andersen A, Dickenson M, Bardram J, Steffensen P, Mønsted S (2011) Clc sequence viewer. A/S Cb, version 6

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Cheng J, Wu Z, Qin C, Tan S, Tang X, Cui J, Zhang L, Hu K (2015) An InDel-based linkage map of hot pepper (Capsicum annuum). Mol Breed 35:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M-Y, Xu Z-S, Tian C, Huang Y, Wang F, Xiong A-S (2016) Genomic identification of WRKY transcription factors in carrot (Daucus carota) and analysis of evolution and homologous groups for plants. Sci Rep 6:23101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Ling J et al (2011) Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC Genom 12:471

    Article  CAS  Google Scholar 

  • Liu H, Yang W, Liu D, Han Y, Zhang A, Li S (2011) Ectopic expression of a grapevine transcription factor VvWRKY11 contributes to osmotic stress tolerance in Arabidopsis. Mol Biol Rep 38:417–427

    Article  CAS  PubMed  Google Scholar 

  • Mangelsen E, Kilian J, Berendzen KW, Kolukisaoglu ÜH, Harter K, Jansson C, Wanke D (2008) Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots. BMC Genom 9:194

    Article  CAS  Google Scholar 

  • Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, Rieseberg LH, Otto SP (2011) Recently formed polyploid plants diversify at lower rates. Science 333:1257–1257

    Article  CAS  PubMed  Google Scholar 

  • Mukhtar MS, Deslandes L, Auriac MC, Marco Y, Somssich IE (2008) The Arabidopsis transcription factor WRKY27 influences wilt disease symptom development caused by Ralstonia solanacearum. Plant J 56:935–947

    Article  CAS  PubMed  Google Scholar 

  • Panchy N, Lehti-Shiu M, Shiu S-H (2016) Evolution of gene duplication in plants. Plant Physiol 171:2294–2316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin Y, Tian Y, Liu X (2015) A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana. Biochem. Biophys Res Commun 464:428–433

    Article  CAS  Google Scholar 

  • Qiu Y, Yu D (2009) Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot 65:35–47

    Article  CAS  Google Scholar 

  • Rinerson CI, Rabara RC, Tripathi P, Shen QJ, Rushton PJ (2015) The evolution of WRKY transcription factors. BMC Plant Biol 15:66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross CA, Liu Y, Shen QJ (2007) The WRKY gene family in rice (Oryza sativa). J Integr Plant Biol 49:827–842

    Article  CAS  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sani AS et al (2017) Genetic diversity, population structure, and genetic correlation with climatic variation in chickpea (Cicer arietinum) landraces from Pakistan. Plant Genome 11:170067

    Google Scholar 

  • Schluttenhofer C, Yuan L (2015) Regulation of specialized metabolism by WRKY transcription factors. Plant Physiol 167:295–306

    Article  CAS  PubMed  Google Scholar 

  • Shiu S-H, Bleecker AB (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132:530–543

    Article  CAS  PubMed  Google Scholar 

  • Sievers F et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  • Song H, Nan Z (2014) Genome-wide identification and analysis of WRKY transcription factors in Medicago truncatula. Hereditas 36:152–168

    CAS  PubMed  Google Scholar 

  • Song H, Wang P, Nan Z, Wang X (2014) The WRKY transcription factor genes in lotus japonicus. Int J Genom. https://doi.org/10.1155/2014/420128

    Article  Google Scholar 

  • Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18:207–208

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thudi M et al (2016) Whole genome re-sequencing reveals genome-wide variations among parental lines of 16 mapping populations in chickpea (Cicer arietinum L.). BMC Plant Biol 16:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK et al (2013) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv 31:1120–1134

    Article  PubMed  Google Scholar 

  • Verma M, Kumar V, Patel RK, Garg R, Jain M (2015) CTDB: an integrated chickpea transcriptome database for functional and applied genomics. PLoS ONE 10:e0136880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vom Endt D, Kijne JW, Memelink J (2002) Transcription factors controlling plant secondary metabolism: what regulates the regulators? Phytochemistry 61:107–114

    Article  CAS  PubMed  Google Scholar 

  • Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang QQ, Liu F, Chen XS, Ma XJ, Zeng HQ, Yang ZM (2010) Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant. Genomics 96:369–376

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Wang M, Zhang X, Hao B, Kaushik S, Pan Y (2011) WRKY gene family evolution in Arabidopsis thaliana. Genetica 139:973

    Article  CAS  PubMed  Google Scholar 

  • Wang H-L, Yang J, Boykin LM, Zhao Q-Y, Wang Y-J, Liu S-S, Wang X-W (2014a) Developing conversed microsatellite markers and their implications in evolutionary analysis of the Bemisia tabaci complex. Sci Rep 4:6351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L et al (2014b) Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera. BMC Plant Biol 14:103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N, Xia E-H, Gao L-Z (2016) Genome-wide analysis of WRKY family of transcription factors in common bean, Phaseolus vulgaris: chromosomal localization, structure, evolution and expression divergence. Plant Gene 5:22–30

    Article  CAS  Google Scholar 

  • Wei K-F, Chen J, Chen Y-F, Wu L-J, Xie D-X (2012) Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. DNA Res 19:153–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y et al (2016) Genome-wide identification and expression analysis of the WRKY gene family in cassava. Front Plant Sci 7:25

    PubMed  PubMed Central  Google Scholar 

  • Wu K-L, Guo Z-J, Wang H-H, Li J (2005) The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Res 12:9–26

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y et al (2017) Genome-wide identification of WRKY genes and their expression profiles under different abiotic stresses in Elaeis guineensis. PLoS ONE 12:e0189224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Zhang Z-L, Zou X, Huang J, Ruas P, Thompson D, Shen QJ (2005) Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol 137:176–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Breen G, Chen C-K, Huang Y-S, Wu Y-Y, Asherson P (2010) Association study between a polymorphism at the 3′-untranslated region of CLOCK gene and attention deficit hyperactivity disorder. Behav Brain Funct 6:481

    Article  CAS  Google Scholar 

  • Yang B, Jiang Y, Rahman MH, Deyholos MK, Kav NN (2009) Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments. BMC Plant Biol 9:68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu D, Chen C, Chen Z (2001) Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13:1527–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Wang N, Hu R, Xiang F (2016) Genome-wide identification of soybean WRKY transcription factors in response to salt stress. Springer Plus 5:920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wang L (2005) The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol 5:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C et al (2017) Genome-wide identification of the potato WRKY transcription factor family. PLoS ONE 12:e0181573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M et al (2018) Transcriptome-wide identification and screening of WRKY factors involved in the regulation of taxol biosynthesis in Taxus chinensis. Sci Rep 8:5197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou Z, Yang L, Wang D, Huang Q, Mo Y, Xie G (2016) Gene structures, evolution and transcriptional profiling of the WRKY gene family in castor bean (Ricinus communis L.). PLoS ONE 11:e0148243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Punjab Agricultural Research Board (Government of Punjab), Lahore, Pakistan for funding through Project PARB-938, as well as Centre for Advanced Studies in Agriculture and Food Security (CAS-AFS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rana Muhammad Atif.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 127 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waqas, M., Azhar, M.T., Rana, I.A. et al. Genome-wide identification and expression analyses of WRKY transcription factor family members from chickpea (Cicer arietinum L.) reveal their role in abiotic stress-responses. Genes Genom 41, 467–481 (2019). https://doi.org/10.1007/s13258-018-00780-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-018-00780-9

Keywords

Navigation