Skip to main content
Log in

Application Frequency and Colonization of the Rhizosphere of Strawberry (Fragaria x ananassa Duchesne) Plants by Azospirillum Brasilense

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The use of growth-promoting bacteria in agriculture has been highlighted for its potential to improve crop yield, facilitate plant growth, and increase stress tolerance. The use of inoculants based on Azospirillum brasilense may become an alternative to the application of agricultural inputs for being able to fix nitrogen, solubilize phosphates, and produce phytohormones, besides its potential to reduce the use of fertilizers. The objective of this study was to evaluate the effect of different frequencies of Azospirillum brasilense application via soil on strawberry cultivation, measuring phytotechnical, physiological, nutritional, and anatomical characteristics. Strawberry cv. Pircinque seedlings from in vitro cultivation were acclimatized, transplanted into pots, and maintained in a greenhouse. Five treatments were used, consisting of (T1) single inoculation; (T2) inoculation every 15 days; (T3) inoculation every 30 days; (T4) control with complete nutrient solution without inoculation; and (T5) control with reduced nutrient solution without inoculation. The nutrient solution was applied every 15 days in the controls. Plants with biweekly inoculations were superior to the controls and other treatments in terms of phytotechnical and physiological characteristics, and also resulted in higher densities of total bacteria, measured by quantitative real-time PCR (qPCR). The treatment with a single application of the inoculant resulted in significant increases in root length and dry biomass. Therefore, inoculation with Azospirillum brasilense demonstrates promising results in terms of reducing fertilizer demand and eliciting a positive response to inoculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Albuquerque MPF et al (2013) Ecophysiology of young African mahogany plants subjected to water deficit and rehydration. Pesq Agrop Brasileira 48(1):9–16

    Article  Google Scholar 

  • Andrade FM, de Assis Pereira T, Souza TP, Guimarães PHS, Martins AD, Schwan RF, Dória J (2019) Beneficial effects of inoculation of growth-promoting bacteria in strawberry. Microbiol Res 223:120–128. https://doi.org/10.1016/j.micres.2019.04.005

    Article  PubMed  Google Scholar 

  • Bashan Y, De-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growtha critical assessment. Advances agronomy, vol 108. Elsevier, pp 77–136

    Google Scholar 

  • Bashan Y et al (1995) Survival of Azospirillum brasilense in the bulk soil and rhizosphere of 23 soil types. Appl Environ Microbiol 61(5):1938–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu A, Prasad P, Das SN, Kalam S, Sayyed RZ, Reddy MS, El Enshasy H (2021) Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability 13(3):1140

    Article  CAS  Google Scholar 

  • Bertolli SC, De Souza J, Souza GM (2015) Photosynthetic characterization of the isohydric species pata-de-elefante under water deficiency conditions. Revista Caatinga 28(3):196–205

    Article  Google Scholar 

  • Brankatschk R, Bodenhausen N, Zeyer J, Bürgmann H (2012) Simple absolute quantification method correcting for quantitative PCR efficiency variations for microbial community samples. Appl Environ Microbiol 78:4481–4489. https://doi.org/10.1128/AEM.07878-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calbo MER, Moraes J (1997) Photosynthesis, stomatal conductance, transpiration and osmotic adjustment of buriti plants submitted to water stress. Rev Bras Fisiol Veg 9(2):117–123

    Google Scholar 

  • Cardinali-Rezende ZLJ, Pereira JL, Sanz E, Chartone-Souza E, Nascimento AMA (2012) Bacterial and archaeal phylogenetic diversity associated with swine sludge from an anaerobic treatment lagoon. World J Microbiol Biotechnol 28(11):3187–3195. https://doi.org/10.1007/s11274-012-1129-8

    Article  PubMed  Google Scholar 

  • Cassán F, Diaz-Zorita M (2016) Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biol Biochem 103:117–130

    Article  Google Scholar 

  • Curá J et al (2017) Inoculation with Azospirillum sp. and Herbaspirillum sp. bacteria increases the tolerance of maize to drought stress. Microorganisms 5(3):41

    Article  PubMed  PubMed Central  Google Scholar 

  • Darwin R, Gabriel V, Norman S, Bryan R, Bangeppagari M, Rajesh R, Kundapur M, Selvanayagam (2016) Effect of Azospirillum spp. and Azotobacter spp. on the growth and yield of strawberry (Fragaria vesca) in hydroponic system under different nitrogen levels. J Appl Pharm Sci. https://doi.org/10.7324/JAPS.2016.600108

    Article  Google Scholar 

  • Delaporte-Quintana P et al (2017) Contribution of Gluconacetobacter diazotrophicus to phosphorus nutrition in strawberry plants. Plant Soil 419(1–2):335–347

    Article  CAS  Google Scholar 

  • Dobbelaere S et al (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in AIA production on wheat. Plant Soil 212(2):153–162

    Article  Google Scholar 

  • Fasciglione G et al (2015) Azospirillum inoculation effects on growth, product quality and storage life of lettuce plants grown under salt stress. Sci Hortic 195:154–162

    Article  CAS  Google Scholar 

  • Ferreira CM, Soares HM, Soares EV (2019) Promising bacterial genera for agricultural practices: an insight on plant growth-promoting properties and microbial safety aspects. Sci Total Environ 682:779–799

    Article  CAS  PubMed  Google Scholar 

  • Fukami J, Cerezini P, Hungria M (2018) Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express 8(1):73

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez A (2015) Growth promotion of herbaceous legumes using rhizobia isolated from coal mining areas.2015. 105p. Dissertation (Master in Biotechnology and Biosciences) - Federal University of Santa Catarina, Florianópolis

  • Guerrero-Molina MF, Winik BC, Pedraza RO (2012) More than rhizosphere colonization of strawberry plants by Azospirillum brasilense. Appl Soil Ecol 61:205–212

    Article  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. California Agricultural Experiment Station. Circular 347

  • Jadoski SO, Klar AE, Salvador ED (2005) Water and physiological relationships in bell pepper plants over one day. Ambiência 1(1):11–19

    Google Scholar 

  • Kirschbaum DS, Vicente CE, Cano-Torres MA, Gambardella M, Veizaga-Pinto FK, Antunes LEC (2017) Strawberry in South America: from the Caribbean to Patagonia. Acta Hortic 1156:947–956. https://doi.org/10.17660/ActaHortic.2017.1156.140

    Article  Google Scholar 

  • Larraburu EE, Llorente BE (2015) Anatomical changes induced by Azospirillum brasilense in in vitro rooting of pink lapacho. Plant Cell Tissue Organ Cult 122(1):175–184

    Article  CAS  Google Scholar 

  • Larraburu EE, Apóstolo NM, Llorente BE (2010) Anatomy and morphology of photinia (Photinia × fraseri Dress) in vitro plants inoculated with rhizobacteria. Trees 24(4):635–642

    Article  Google Scholar 

  • Malavolta E, Vitti GC, Oliveira ASD (1997) Evaluation of the nutritional status of plants: principles and applications, 2nd edn. Piracicaba, Brazilian Potash and Phosphorus Association, p 319

    Google Scholar 

  • Morais MC et al (2019) Comparative study of plant growth-promoting bacteria on the physiology, growth and fruit quality of strawberry. J Sci Food Agric 99(12):5341–5349

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog FA (1962) Revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Pedraza RO, Motok J, Tortora ML, Salazar SM, Dı´az-Ricci JC (2007) Natural occurrence of Azospirillum brasilense in strawberry plants. Plant Soil 295:169–178

    Article  CAS  Google Scholar 

  • Pedraza RO, Motok J, Salazar SM et al (2010) Growth-promotion of strawberry plants inoculated with Azospirillum brasilense. World J Microbiol Biotechnol 26:265–272. https://doi.org/10.1007/s11274-009-0169-1

    Article  Google Scholar 

  • Pereira e Silva MC, Schloter-Hai B, Schloter M, Elsas JDV, Salles JF (2013) Temporal dynamics of abundance and composition of nitrogen-fixing communities across agricultural soils. PLoS One 8(9):e74500. https://doi.org/10.1371/journal.pone.0074500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pramod K, Nisha S, Sandeep S, Rucku G (2020) Rhizosphere stochiometry, fruit yield, quality attributes and growth response to PGPR transplant amendments in strawberry (Fragaria × ananassa Duch.) growing on solarized soils. Scientia Hortic. https://doi.org/10.1016/j.scienta.2020.109215

    Article  Google Scholar 

  • Quadros PDD et al (2014) Field agronomic performance of corn hybrids inoculated with Azospirillum. Ceres J 61:209–218

    Article  Google Scholar 

  • Reis MP, Ávila MP, Costa PS, Barbosa FA, Laanbroek HJ, Chartone-Souza E, Nascimento AM (2014) The influence of human settlement on the distribution and diversity of iron-oxidizing bacteria belonging to the Gallionellaceae in tropical streams. Front Microbiol 5:630. https://doi.org/10.3389/fmicb.2014.00630

    Article  PubMed  PubMed Central  Google Scholar 

  • Riaz U, Mehdi SM, Iqbal S, Khalid HI, Qadir AA, Anum W et al (2020) Bio-fertilizers: eco-friendly approach for plant and soil environment. Bioremediation and biotechnology. Springer, Singapore, pp 189–213

    Chapter  Google Scholar 

  • Santos MS, Nogueira MA, Hungria M (2019) Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express 9(1):205

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos MS, Nogueira MA, Hungria M (2021) Outstanding impact of Azospirillum brasilense strains Ab-V5 and Ab-V6 on the Brazilian agriculture: lessons that farmers are receptive to adopt new microbial inoculants. Rev Bras Cienc Solo 45. https://doi.org/10.36783/18069657rbcs20200128

  • Sharma K, Dak G, Agrawal A, Bhatnagar M, Sharma R (2007) Effect of phosphate solubilizing bacteria on the germination of Cicer arietinum seeds and seedling growth. J Herb Med Toxicol 1(1):61–63

    Google Scholar 

  • Silva LI, Oliveira IP, Jesus EC, Pereira MC, Pasqual M, Araújo RC, Dória J (2022) Fertilizer of the future: beneficial bacteria promote strawberry growth and yield and may reduce the need for chemical fertilizer. Agronomy 12:2465. https://doi.org/10.3390/agronomy12102465

    Article  CAS  Google Scholar 

  • Somers E et al (2005) Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis. Appl Environ Microbiol 71(4):1803–1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staroscik A (2004) Calculator for determining the number of copies of a template. URI Genomics & Sequencing Center 19:2012

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24(4):487–506

    Article  CAS  PubMed  Google Scholar 

  • Zaheer MS, Raza MAS, Saleem MF, Khan IH, Ahmad S, Iqbal R, Manevski K (2019) Investigating the effect of Azospirillum brasilense and Rhizobium pisi on agronomic traits of wheat (Triticum aestivum L.). Arch Agron Soil Sci 65(11):1554–1564. https://doi.org/10.1080/03650340.2019.1566954

    Article  Google Scholar 

  • Zhang J, Tingting G, Pengcheng W, Hongmei T, Yan W, Jingyi C (2018) Characterization of diazotrophic growth-promoting rhizobacteria isolated from ginger root soil as antagonists against Ralstonia solanacearum. Biotech Biotechnol Equipment 32(6):1447–1454

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico do Brasil (CNPq), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Writing the research project, carrying out the analysis and interpretation of the results, and preparing the manuscript.

Corresponding author

Correspondence to Joyce Dória.

Ethics declarations

Conflict of Interest

No interest to declare.

Additional information

Handling Editor: Christian Chervin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, A.J.M., Cavalcanti, V.P., Rodrigues, F.A. et al. Application Frequency and Colonization of the Rhizosphere of Strawberry (Fragaria x ananassa Duchesne) Plants by Azospirillum Brasilense. J Plant Growth Regul 43, 986–997 (2024). https://doi.org/10.1007/s00344-023-11154-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-023-11154-1

Keywords

Navigation