Skip to main content
Log in

Anatomical changes induced by Azospirillum brasilense in in vitro rooting of pink lapacho

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The pink lapacho Handroanthus impetiginosus, a South American native deciduous tree, is widely grown as an ornamental, medicinal, and timber resource. In vitro culturing allows ex situ conservation but may cause anatomical changes that decrease plant survival. This study evaluated the ability of Azospirillum brasilense to reverse such changes in H. impetiginosus in in vitro culture under different conditions. Handroanthus impetiginosus shoots were induced with different indole-3-butyric acid (IBA) pulse treatments (3 days), transferred to two half-strength media [Murashige–Skoog salts with Gamborg’s vitamins (½MSG) and woody-plant medium (½WPM)], and were inoculated or not inoculated with A. brasilense Cd or Az39 strains. Rooted plant samples were processed for observation under light and scanning electron microscopy. Factorial analysis revealed significant triple interaction between medium type, IBA concentration, and bacteria inoculation (p ≤ 0.01) for all anatomical parameters. A. brasilense Cd inoculation significantly increased (p ≤ 0.05) mesophyll thickness in ½WPM for 10–50 μM IBA inductions and in ½MSG for 0, 10, and 40 μM IBA inductions compared to uninoculated plants. The Cd strain decreased stomatal density by 29 % in plants grown in ½MSG compared to uninoculated plants, whereas the Az39 strain increased the same by 30 %. Bacterial colonization improved periclinal epidermal cell division, bundle fiber development, secondary stem growth, and root hair density compared to that in uninoculated plants. The H. impetiginosus rooting by A. brasilense inoculation, mainly with the Cd strain, decreased undesirable anatomical modifications generated in vitro, enhancing adaptation to ex vitro conditions after transplanting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aasamaa K, Sober A, Rahi M (2001) Leaf anatomical characteristic associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees. Funct Plant Biol 28:765–774

    Article  Google Scholar 

  • Abbade LC, de Oliveira Paiva PD, Paiva R, de Castro EM, Centofante AR, de Oliveira C (2009) Anatomia foliar de ipê-branco (Tabebuia roseo Alba (Ridl.) Sand.)—Bignoniaceae, proveniente do cultivo ex vitro e in vitro. Acta Sci Biol Sci 31:307–311. doi:10.4025/actascibiolsci.v31i3.1937

    Article  Google Scholar 

  • Ait-Barka E, Gognies S, Nowak J, Audran JC, Belarbi A (2002) Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control 24:135–142. doi:10.1016/S1049-9644(02)00034-8

    Article  Google Scholar 

  • Apóstolo NM, Llorente BE (2000) Anatomy of normal and hyperhydric leaves and shoots of in vitro grown Simmondsia chinesis (link) schn. In Vitro Cell Dev Biol Plant 36:243–249. doi:10.1007/s11627-000-0045-z

    Article  Google Scholar 

  • Apóstolo NM, Brutti CB, Llorente BE (2005) Leaf anatomy of Cynara scolymus L. in successive micropropagation stages. In Vitro Cell Dev Biol Plant 41:307–313. doi:10.1079/IVP2004606

    Article  Google Scholar 

  • Bashan Y, De-Bashan LE (2010) How the plant growth-promoting bacterium azospirillum promotes plant growth-a critical assessment. Adv Agron 108:77–136. doi:10.1016/S0065-2113(10)08002-8

    CAS  Google Scholar 

  • Carletti S, Llorente B, Rodríguez Cáceres E, Tandecarz J (1998) Jojoba inoculation with Azospirillum brasilense stimulates in vitro root formation. Plant Tissue Cult Biotechnol 4:165–174

    Google Scholar 

  • Costa ME, Sampaio DS, Paoli AAS, Leite SC (2004) Polyembryony and aspects of embryogenesis in Tabebuia ochracea (Chamisso) Standley (Bignoniaceae). Braz J Bot 27:395–406

    Article  Google Scholar 

  • D’Ambroggio A (1986) Manual de técnicas en histología vegetal. Hemisferio Sur, Buenos Aires

    Google Scholar 

  • de Souza LA, Iwazaki MC, Moscheta IS (2005) Morphology of the pericarp and seed of Tabebuia chrysotricha (Mart. ex DC.) Standl. (Bignoniaceae). Braz Arch Biol Technol 48:407–418

    Google Scholar 

  • Fráguas-Chirinéa CF, Pasqual M, Araujo AG, Pereira AR, Castro EM (2012) Acclimatization and leaf anatomy of micropropagated fig plantlets. Rev Bras Frutic 34:1180–1188

    Article  Google Scholar 

  • Frommel MI, Nowak J, Lazarovits G (1991) Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum spp. tuberosum) as affected by a nonfluorescent Pseudomonas sp. Plant Physiol 96:928–936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158. doi:10.1016/0014-4827(68)90403-5

    Article  CAS  PubMed  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598. doi:10.1007/s13213-010-0117-1

    Article  Google Scholar 

  • Hazarika BN (2006) Morpho-physiological disorders in in vitro culture of plants. Sci Hortic 108:105–120. doi:10.1016/j.scienta.2006.01.038

    Article  CAS  Google Scholar 

  • Jausoro V, Llorente BE, Apóstolo NM (2010) Structural differences between hyperhydric and normal in vitro shoots of Handroanthus impetiginosus (Mart. ex DC) Mattos (Bignoniaceae). Plant Cell Tissue Organ 101:183–191. doi:10.1007/s11240-010-9675-y

    Article  CAS  Google Scholar 

  • Justiniano J, Fredericksen T, Nash D (2000) Ecología y silvicultura de especies menos conocidas-Tajibos o Lapachos (Tabebuia spp.) Bignoniaceae. Editora El País, Santa Cruz, Bolivia

  • Larraburu EE, Llorente BE (2015) Azospirillum brasilense enhances in vitro rhizogenesis of Handroanthus impetiginosus (pink lapacho) in different culture media. Ann For Sci 72:219–229. doi:10.1007/s13595-014-0418-9

    Article  Google Scholar 

  • Larraburu EE, Carletti SM, Rodríguez Cáceres EA, Llorente BE (2007) Micropropagation of photinia employing rhizobacteria to promote root development. Plant Cell Rep 26:711–717. doi:10.1007/s00299-006-0279-2

    Article  CAS  PubMed  Google Scholar 

  • Larraburu EE, Apóstolo NM, Llorente BE (2010) Anatomy and morphology of photinia (Photinia × fraseri Dress) in vitro plants inoculated with rhizobacteria. Trees 24:635–642. doi:10.1007/s00468-010-0433-x

    Article  Google Scholar 

  • Larraburu EE, Apóstolo NM, Llorente BE (2012) In vitro propagation of pink lapacho: response surface methodology and factorial analysis for optimisation of medium components. Int J For Res. doi:10.1155/2012/318258

  • Leonardi D, Di Sapio P, Gattuso N, Gattuso S (2002) Anatomía del género Tabebuia. Bol Soc Arg Bot 37:51–61

    Google Scholar 

  • Lloyd GB, McCown BH (1980) Commercially-feasible micropropagation of Mountain laurel, Kalmia latifolia, by use of shoot tip culture. Proc Int Plant Prop Soc 30:421–426

    Google Scholar 

  • Lozano EC, Zapater MA (2008) Delimitación y estatus de Handroanthus heptaphyllus y H. impetiginosus (Bignoniaceae, Tecomeae). Darwiniana 46:304–317

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Okon Y, Albrecht SL, Burris RH (1977) Methods for growing Spirillum lipoferum and for counting it in pure culture and in association with plants. Appl Environ Microbiol 33:85–88

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pijut PM, Beasley R, Lawson S, Palla K, Stevens M, Wang Y (2012) In vitro propagation of tropical hardwood tree species-a review (2001–2011). Prop Ornam Plants 12:25–51

    Google Scholar 

  • Ribaudo CM, Krumpholz EM, Cassán FD, Bottini R, Cantore ML, Curá JA (2006) Azospirillum sp. promotes root hair development in tomato plants through a mechanism that involves ethylene. J Plant Growth Reg 25:175–185. doi:10.1007/s00344-005-0128-5

    Article  CAS  Google Scholar 

  • Rodriguez-Cáceres EA (1982) Improved medium for isolation of Azospirillum spp. Appl Environ Microbiol 44:990–991

    Google Scholar 

  • Russo A, Vettori L, Felici C, Fiaschi G, Morini S, Toffanin A (2008) Enhanced micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. clone Mr.S 2/5 plants. J Biotechnol 134:312–319. doi:10.5772/31466

    Article  CAS  PubMed  Google Scholar 

  • Sáez PL, Bravo LA, Sáez KL, Sánchez-Olate M, Latsague MI, Ríos DG (2012) Photosynthetic and leaf anatomical characteristics of Castanea sativa: a comparison between in vitro and nursery plants. Biol Plant 56:15–24. doi:10.1007/s10535-012-0010-9

    Article  Google Scholar 

  • Sarasan V, Cripps R, Ramsay MM et al (2006) Conservation in vitro of threatened plants. Progress in the past decade. In Vitro Cell Dev Biol Plant 42:206–214. doi:10.1079/IVP2006769

    Article  Google Scholar 

  • Vettori L, Russo A, Felici C, Fiaschi G, Morini S, Toffanin A (2010) Improving micropropagation: effect of Azospirillum brasilense Sp245 on acclimatization of rootstocks of fruit tree. J Plant Interact 5:249–259. doi:10.1080/17429145.2010.511280

    Article  Google Scholar 

  • Zhao Y, Hasenstein KH (2009) Primary root growth regulation: the role of auxin and ethylene antagonists. J Plant Growth Reg 28:309–320. doi:10.1093/aob/mcm142

    Article  CAS  Google Scholar 

  • Ziv M, Chen J (2008) The anatomy and morphology of tissue cultured plants. In George E, Hall M, de-Klerk GJ (eds) Plant propagation by tissue culture volume 1: the background. Dordrecht, pp 465–479. doi:10.1007/978-1-4020-5005-3

Download references

Acknowledgments

This research was supported by a grant from the Department of Basic Sciences, National University of Luján, Argentina. We thank Dr. Yaacov Okon (Faculty of Agriculture, the Hebrew University of Jerusalem, Israel) and Ing. Enrique Rodríguez-Cáceres (Agriculture Collection Laboratory of the Institute of Microbiology and Agricultural Zoology (IMYZA), National Agricultural Technology Institute (INTA), Castelar, Argentina) for kindly providing A. brasilense Cd and A. brasilense Az39, respectively.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezequiel E. Larraburu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larraburu, E.E., Llorente, B.E. Anatomical changes induced by Azospirillum brasilense in in vitro rooting of pink lapacho. Plant Cell Tiss Organ Cult 122, 175–184 (2015). https://doi.org/10.1007/s11240-015-0759-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0759-6

Keywords

Navigation