Skip to main content
Log in

Morphological and Transcriptional Analyses of Regeneration Events in Pepper Plants (Capsicum annuum) Expose Patterns of Shoot Apical Meristem Formation

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Plant cells are endowed with a plastic nature that confers them the capacity to regenerate most plant organs or even an entire plant body from somatic cells. Plant tissue culture procedures take advantage of this asset to induce specific morphogenic responses using hormonal treatments. Still many plants, for example, peppers (Capsicum annuum), are considered recalcitrant because they respond poorly to exogenous hormone applications, which strongly limits transformation and genetic manipulations in this species. In this study, we exposed pepper cotyledon and hypocotyl explants to various cytokinins-containing media and characterized the morphological and gene-expression events that took place during adventitious shoot formation. Cellular organization events were observed and led to the formation of small protrusions, which in turn developed and expanded to form abundant rosette-leaf-like organs. Shoot formation was also obtained, although in rarer cases, and promoted the growth of elongated plantlets that at last rooted well. Moreover, gene-expression analyses of pepper cotyledons exposed to cytokinins revealed the induction of shoot morphogenesis-related genes, reflecting the occurrence of events of shoot apical meristem formation. In addition, we identified an increase in the expression of genes related to carbon and primary metabolism, suggesting the need for energy in this process. Here, we developed a protocol for shoot regeneration in pepper and our results provide new insights into adventitious shoot formation in pepper plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal S, Chandra N, Kothari SL (1989) Plant regeneration in tissue cultures of pepper (Capsicum annuum L. cv. mathania). Plant Cell Tissue Organ Cult 16:47–55

    Article  Google Scholar 

  • Arroyo R, Revilla MA (1991) In vitro plant regeneration from cotyledon and hypocotyl segments in two bell pepper cultivars. Plant Cell Rep 10:414–416

    Article  CAS  PubMed  Google Scholar 

  • Atta R, Laurens L, Boucheron-Dubuisson E et al (2009) Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J 57:626–644

    Article  CAS  PubMed  Google Scholar 

  • Bolduc N, Hake S (2009) The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1. Plant Cell 21:1647–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bu D, Luo H, Huo P et al (2021) KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res 49:W317–W325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng ZJ, Wang L, Sun W et al (2013) Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3. Plant Physiol 161:240–251

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Banerjee AK, Hannapel DJ (2004) The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20ox1. Plant J 38:276–284

    Article  CAS  PubMed  Google Scholar 

  • Chickarmane VS, Gordon SP, Tarr PT et al (2012) Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem. Proc Natl Acad Sci U S A 109:4002–4007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christianson ML, Warnick DA (1983) Competence and determination in the process of in vitro shoot organogenesis. Dev Biol 95:288–293

    Article  CAS  PubMed  Google Scholar 

  • Christianson ML, Warnick DA (1985) Temporal requirement for phytohormone balance in the control of organogenesis in vitro. Dev Biol 112:494–497

    Article  CAS  Google Scholar 

  • Coleman GD, Ernst SG (1990) Shoot induction competence and callus determination in Populus deltoides. Plant Sci 71:83–92

    Article  Google Scholar 

  • Dabauza M, Peña L (2001) High efficiency organogenesis in sweet pepper (Capsicum annuum L.) tissues from different seedling explants. Plant Growth Regul 33:221–229

    Article  CAS  Google Scholar 

  • Delis M, Garbaczewska G, Niemirowicz-Szczytt K (2005) Differentiation of adventitious buds from Capsicum annuum L. hypocotyls after co-culture with Agrobacterium tumefaciens. Acta Biol Cracov Bot 47(1):193–198

    Google Scholar 

  • Eshed Williams L (2021) Genetics of Shoot Meristem and Shoot Regeneration. Annu Rev Genet. https://doi.org/10.1146/annurev-genet-071719-020439

    Article  PubMed  Google Scholar 

  • Etchells JP, Provost CM, Mishra L, Turner SR (2013) WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation. Development 140:2224–2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franck-Duchenne M, Wang Y, Ben Tahar S, Beachy RN (1998) In vitro stem elongation of sweet pepper in media containing 24-epi-brassinolide. Plant Cell Tissue Organ Cult 53:79–84

    Article  CAS  Google Scholar 

  • Gaj MD, Trojanowska A, Ujczak A et al (2006) Hormone-response mutants of Arabidopsis thaliana (L.) Heynh. impaired in somatic embryogenesis. Plant Growth Regul 49:183–197

    Article  CAS  Google Scholar 

  • Gallois J-L, Nora FR, Mizukami Y, Sablowski R (2004) WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes Dev 18:375–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gammoudi N, Pedro TS, Ferchichi A, Gisbert C (2018) Improvement of regeneration in pepper: a recalcitrant species. In Vitro Cell Dev Biol Plant 54:145–153

    Article  CAS  Google Scholar 

  • Gifford EM, Corson GE (1971) The shoot apex in seed plants. Bot Rev 5(8):454–470

    Google Scholar 

  • Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM (2009) Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci U S A 106:16529–16534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon SP, Heisler MG, Reddy GV et al (2007) Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134:3539–3548

    Article  CAS  PubMed  Google Scholar 

  • Hay A, Kaur H, Phillips A et al (2002) The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Curr Biol 12:1557–1565

    Article  CAS  PubMed  Google Scholar 

  • Heidmann I, de Lange B, Lambalk J et al (2011) Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Rep 30:1107–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirakawa Y, Kondo Y, Fukuda H (2010) TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell 22:2618–2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husain S, Jain A, Kothari SL (1999) Phenylacetic acid improves bud elongation and in vitro plant regeneration efficiency in Capsicum annuum L. Plant Cell Rep 19:64–68

    Article  CAS  PubMed  Google Scholar 

  • Hyde CL, Phillips GC (1996) Silver nitrate promotes shoot development and plant regeneration of chile pepper (Capsicum annuum L.) via organogenesis. In Vitro - Plant 32:72–80

    Article  CAS  Google Scholar 

  • Ikeuchi M, Ogawa Y, Iwase A, Sugimoto K (2016) Plant regeneration: cellular origins and molecular mechanisms. Development 143:1442–1451

    Article  CAS  PubMed  Google Scholar 

  • Jaitin DA, Kenigsberg E, Keren-Shaul H et al (2014) Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343:776–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji J, Strable J, Shimizu R et al (2010) WOX4 promotes procambial development. Plant Physiol 152:1346–1356

    Article  CAS  PubMed  Google Scholar 

  • Khan H, Siddique I, Anis M (2006) Thidiazuron induced somatic embryogenesis and plant regeneration in Capsicum annuum. Biol Plant 50:789–792

    Article  CAS  Google Scholar 

  • Koornneef M, Hanhart CJ, Martinelli L (1987) A genetic analysis of cell culture traits in tomato. Theor Appl Genet 74:633–641

    Article  CAS  PubMed  Google Scholar 

  • Kothari SL, Joshi A, Kachhwaha S, Ochoa-Alejo N (2010) Chilli peppers–a review on tissue culture and transgenesis. Biotechnol Adv 28:35–48

    Article  CAS  PubMed  Google Scholar 

  • Laux T, Mayer KF, Berger J, Jürgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Lee J, Jie EY et al (2020) Temporal and spatial expression analysis of shoot-regeneration regulatory genes during the adventitious shoot formation in hypocotyl and cotyledon explants of tomato (CV Micro-Tom). Int J Mol Sci. https://doi.org/10.3390/ijms21155309

    Article  PubMed  PubMed Central  Google Scholar 

  • Lincoln C, Long J, Yamaguchi J et al (1994) A knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 6:1859–1876

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Li J, Li J-M, et al (2022) Single-cell transcriptome reveals the redifferentiation trajectories of the early stage of de novo shoot regeneration in Arabidopsis thaliana. bioRxiv 2022.01.01.474510

  • Liu W, Parrott WA, Hildebrand DF et al (1990) Agrobacterium induced gall formation in bell pepper (Capsicum annuum L.) and formation of shoot-like structures expressing introduced genes. Plant Cell Rep 9:360–364

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu C-Y (1993) The use of thidiazuron in tissue culture. In Vitro Cell Dev Biol Plant 29P:92–96

    Article  CAS  Google Scholar 

  • Mayer KF, Schoof H, Haecker A et al (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815

    Article  CAS  PubMed  Google Scholar 

  • Meng WJ, Cheng ZJ, Sang YL et al (2017) Type-B Arabidopsis response regulators specify the shoot stem cell niche by dual regulation of WUSCHEL. Plant Cell 29:1357–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mezghani N, Jemmali A, Elloumi N et al (2007) Morpho-histological study on shoot bud regeneration in cotyledon cultures of pepper (Capsicum annuum). Biologia 62:704–710

    Article  CAS  Google Scholar 

  • Nishi T, Yamada Y, Takahashi E (1968) Organ redifferentiation and plant restoration in rice callus. Nature 219:508–509

    Article  CAS  PubMed  Google Scholar 

  • Ochoa-Alejo N, Ireta-Moreno L (1990) Cultivar differences in shoot-forming capacity of hypocotyl tissues of chilli pepper (Capsicum annuum L.) cultured in vitro. Sci Hortic 42:21–28

    Article  Google Scholar 

  • Ochoa-Alejo N, Ramirez-Malagon R (2001) In vitro chili pepper biotechnology. In Vitro Cell Dev Biol Plant 37:701–729

    Article  CAS  Google Scholar 

  • Palni LM, Palmer MV, Letham DS (1984) The stability and biological activity of cytokinin metabolites in soybean callus tissue. Planta 160:242–249

    Article  CAS  PubMed  Google Scholar 

  • Peddaboina V, Thamidala C, Karampuri S (2003) Thidiazuron induced high frequency adventitious shoot formation and plant regeneration in Capsicum annuum L. J Plant Biotechnol 5:245–250

    Google Scholar 

  • Ramírez-Malagón R, Ochoa-Alejo N (1996) An improved and reliable chili pepper (Capsicum annuum L.) plant regeneration method. Plant Cell Rep 16:226–231

    Article  PubMed  Google Scholar 

  • Rashid SZ, Yamaji N, Kyo M (2007) Shoot formation from root tip region: a developmental alteration by WUS in transgenic tobacco. Plant Cell Rep 26:1449–1455

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt D, Pesce E-R, Stieger P et al (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260

    Article  CAS  PubMed  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  • Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakamoto T, Kamiya N, Ueguchi-Tanaka M et al (2001) KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev 15:581–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoof H, Lenhard M, Haecker A et al (2000) The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644

    Article  CAS  PubMed  Google Scholar 

  • Shin J, Bae S, Seo PJ (2020) De novo shoot organogenesis during plant regeneration. J Exp Bot 71:63–72

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Sergeeva L, Ligterink W et al (2019) Gibberellin promotes sweetpotato root vascular lignification and reduces storage-root formation. Front Plant Sci 10:1320

    Article  PubMed  PubMed Central  Google Scholar 

  • Snipes SA, Rodriguez K, DeVries AE et al (2018) Cytokinin stabilizes WUSCHEL by acting on the protein domains required for nuclear enrichment and transcription. PLoS Genet 14:e1007351

    Article  PubMed  PubMed Central  Google Scholar 

  • Steinitz B, Wolf D, Matzevitch-Josef T, Zelcer A (1999) Regeneration in vitro and genetic transformation of pepper (Capsicum spp.): the current state of the art The current state of art. Capsicum Eggplant Newslett 18(1):9–15

    Google Scholar 

  • Sugimoto K, Jiao Y, Meyerowitz EM (2010) Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev Cell 18:463–471

    Article  CAS  PubMed  Google Scholar 

  • Su YH, Liu YB, Bai B, Zhang XS (2014) Establishment of embryonic shoot-root axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis. Front Plant Sci 5:792

    PubMed  Google Scholar 

  • Su YH, Zhao XY, Liu YB et al (2009) Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J 59:448–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talbot MJ, White RG (2013) Methanol fixation of plant tissue for Scanning Electron Microscopy improves preservation of tissue morphology and dimensions. Plant Methods 9:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Valera-Montero LL, Ochoa-Alejo N (1992) A novel approach for chili pepper (Capsicum annum L.) plant regeneration: shoot induction in rooted hypocotyls. Plant Sci 84:215–219

    Article  CAS  Google Scholar 

  • Vernoux T, Kronenberger J, Grandjean O et al (2000) PIN-FORMED 1 regulates cell fate at the periphery of the shoot apical meristem. Development 127:5157–5165

    Article  CAS  PubMed  Google Scholar 

  • Vollbrecht E, Veit B, Sinha N, Hake S (1991) The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350:241–243

    Article  CAS  PubMed  Google Scholar 

  • Walles B, Steeves, TA, Sussex IM (1991) Patterns in plant development. Nord J Bot 11:204–204

    Article  Google Scholar 

  • Wang J, Tian C, Zhang C et al (2017) Cytokinin signaling activates WUSCHEL expression during axillary meristem initiation. Plant Cell 29:1373–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weigel D, Jürgens G (2002) Stem cells that make stems. Nature 415:751–754

    Article  CAS  PubMed  Google Scholar 

  • Won K-H, Park S-I, Choi J et al (2021) A reliable regeneration method in genome-editable bell pepper “Dempsey.” Horticulturae 7:317

    Article  Google Scholar 

  • Zhang T-Q, Lian H, Zhou C-M et al (2017) A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. Plant Cell 29:1073–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zubo YO, Blakley IC, Yamburenko MV et al (2017) Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis. Proc Natl Acad Sci U S A 114:E5995–E6004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo J, Niu Q-W, Frugis G, Chua N-H (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ilan Paran and Dr. Moshe Reuveni for providing us the plant material used in this study. We are also very thankful to Prof. Leor Eshed-Williams for her advice and critical reading of this manuscript.

Funding

This study was financially supported by the Chief Scientist—Ministry of Agriculture and Rural Development NO. 20–01-0209 as part of the National Center for Genome Editing in Agriculture. Chief Scientist-ministry of agriculture, NO. 20-0 1-0209, Dr. Samuel Bocobza.

Author information

Authors and Affiliations

Authors

Contributions

SB conceived and designed the research. DA, MK, ZF, AF, and HZ conducted the experiments. SB supervised the overall work and critically analyzed the results. DA, MK, and SB wrote the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Samuel Bocobza.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Stefaan Werbrouck.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1554 kb)

Supplementary file2 (DOCX 8666 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayzenshtat, D., Kumar, M., Zemach, H. et al. Morphological and Transcriptional Analyses of Regeneration Events in Pepper Plants (Capsicum annuum) Expose Patterns of Shoot Apical Meristem Formation. J Plant Growth Regul 42, 7474–7487 (2023). https://doi.org/10.1007/s00344-023-11025-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-023-11025-9

Keywords

Navigation