Skip to main content
Log in

Carboxylic Acid-Functionalized Multi-Walled Carbon Nanotubes (COOH-MWCNTs) Elicit Concordant Variations in DNA Cytosine Methylation, Gene Expression, Growth, Morphogenesis, Metabolism, and Callogenesis in Salvia nemorosa; An In Vitro Biological Assessment

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The recent decade has witnessed remarkable breakthroughs in the use of nano-scaled substances in the field of the cell, tissue, and organ culture of plants. This study investigated how Salvia nemorosa responds to the supplementation of a culture medium with different concentrations of carboxylic acid-functionalized multi-walled carbon nanotubes (COOH-MWCNTs; 0, 40, 80, and 120 mgl−1). The application of COOH-MWCNTs influenced plant growth, morphogenesis, and organogenesis. COOH-MWCNTs, especially at 80 mgl−1, reinforced the shoot and root development. The nano-supplements increased biomass accumulations by 2.3-fold. MWCNTs at 120 mgl−1 contributed to the modification in DNA methylation. Moreover, COOH-MWCNTs contributed to the slight increase in the concentrations of photosynthetic pigments. The COOH-MWCNTs-supplemented seedlings contained higher total protein contents than the control. The activities of peroxidase and catalase enzymes displayed an upward trend (about 2-fold) in response to the COOH-MWCNTs. Likewise, COOH-MWCNTs significantly stimulated the activity of the phenylalanine ammonia-lyase enzyme. The COOH-MWCNTs application enhanced the concentrations of phenylpropanoid derivatives and alkaloids. The nano-scaled material also up-regulated the expression of the tyrosine aminotransferase (TAT) gene. Moreover, the COOH-MWCNTs improved callogenesis performance and callus biomass. The biological assessments support the hypothesis that COOH-MWCNTs can be considered as a highly potent elicitor of plant morphogenesis, organogenesis, cell differentiation, callogenesis, metabolism, transcriptome, and DNA methylome.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abedi S, Iranbakhsh A, Oraghi Ardebili Z, Ebadi M (2021) Nitric oxide and selenium nanoparticles confer changes in growth, metabolism, antioxidant machinery, gene expression, and flowering in chicory (Cichorium intybus L.): potential benefits and risk assessment. Environ Sci Pollut Res 28(3):3136–3148

    Article  CAS  Google Scholar 

  • Ali M, Li P, She G, Chen D, Wan X, Zhao J (2017) Transcriptome and metabolite analyses reveal the complex metabolic genes involved in volatile terpenoid biosynthesis in garden sage (Salvia officinalis). Sci Rep 7(1):16074

    Article  PubMed  PubMed Central  Google Scholar 

  • Asgari-Targhi G, Iranbakhsh A, Oraghi Ardebili Z, Hatami Tooski A (2021) Synthesis and characterization of chitosan encapsulated zinc oxide (ZnO) nanocomposite and its biological assessment in pepper (Capsicum annuum) as an elicitor for in vitro tissue culture applications. Int J Biol Macromol 189:170–182. https://doi.org/10.1016/j.ijbiomac.2021.08.117

    Article  CAS  PubMed  Google Scholar 

  • Beaudoin-Eagan LD, Thorpe TA (1985) Tyrosine and phenylalanine ammonia lyase activities during shoot initiation in tobacco callus cultures. Plant Physiol 78:438–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begum P, Ikhtiari R, Fugetsu B (2014) Potential impact of multi-walled carbon nanotubes exposure to the seedling stage of selected plant species. Nanomaterials 4:203–221. https://doi.org/10.3390/nano4020203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhry A, Kaur J, Khatri M, Puri V, Tuli R, Puri S (2019) Characterization of functionalized multiwalled carbon nanotubes and comparison of their cellular toxicity between HEK 293 cells and zebra fish in vivo. Heliyon 5(10):e02605

    Article  PubMed  PubMed Central  Google Scholar 

  • Darigh F, Iranbakhsh A, Oraghi Ardebili Z, Ebadi M (2022a) non-thermal plasma improved callogenesis performance and elicited the production of cannabinoids by modifying DNA methylome, expression of WRKY1 and ERF1B transcription factors, and expression of genes that contributed to the biosynthesis of cannabinoids. Protoplasma. https://doi.org/10.1007/s00709-022-01769-8

    Article  PubMed  Google Scholar 

  • Darigh F, Iranbakhsh A, Ardebili ZO, Ebadi M, Hassanpour H (2022b) Simulated microgravity contributed to modification of callogenesis performance and secondary metabolite production in Cannabis Indica. Plant Physiol Biochem 186:157–168

    Article  CAS  PubMed  Google Scholar 

  • Ghasempour M, Iranbakhsh A, Ebadi M, Ardebili ZO (2019) Multi-walled carbon nanotubes improved growth, anatomy, physiology, secondary metabolism, and callus performance in Catharanthus roseus: an in vitro study. 3Biotech 9(11):404

    Google Scholar 

  • Ghorbanpour M, Hadian J (2015) Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Satureja khuzestanica grown in vitro. Carbon 94:749–759

    Article  CAS  Google Scholar 

  • Guevara MÁ, de María N, Sáez-Laguna E, Vélez MD, Cervera MT, Cabezas JA (2017) Analysis of DNA cytosine methylation patterns using methylation-sensitive amplification polymorphism (MSAP). Methods Mol Biol 1456:99–112

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, Ma C, Zhang Z, Song Y, Cao W, Guo J, Zhou G, Rui Y, Liu L, Xing B (2018) Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem. Environ Pollut 232:123–136

    Article  CAS  PubMed  Google Scholar 

  • Harborne JB (1973) Phytochemical methods. Chapman and Hall Ltd, London, pp 49–188

    Google Scholar 

  • Hatami M, Hadian J, Ghorbanpour M (2017) Mechanisms underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol. J Hazard Mat 324:306–320

    Article  CAS  Google Scholar 

  • Heydari HR, Chamani E, Esmaielpour B (2020) Cell line selection through gamma irradiation combined with multi-walled carbon nanotubes elicitation enhanced phenolic compounds accumulation in Salvia nemorosa cell culture. Plant Cell Tiss Organ Cult 142:353–367

    Article  CAS  Google Scholar 

  • Hu Y, Zhang P, Zhang X, Liu Y, Feng S, Guo D, Nadezhda T, Song Z, Dang X (2021) Multi-Wall carbon nanotubes promote the growth of maize (Zea mays) by regulating carbon and nitrogen metabolism in leaves. J Agric Food Chem 69(17):4981–4991

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Yi B, Duan Y, Sun L, Yu X, Guo J, Chen W (2008) Characterization and expression profiling of tyrosine aminotransferase gene from Salvia miltiorrhiza (Dan-shen) in rosmarinic acid biosynthesis pathway. Mol Biol Rep 35(4):601–612

    Article  CAS  PubMed  Google Scholar 

  • Iranbakhsh A, Oraghi Ardebili Z, Oraghi Ardebili N (2021a) Chapter 9—Gene regulation by H2S in plants. In: Samiksha S, Vijay PS, Durgesh KT, Sheo MP, Devendra KC, Nawal KD (eds) Hydrogen Sulfide in Plant Biology. Academic Press, Cambridge, pp 171–199

    Chapter  Google Scholar 

  • Iranbakhsh A, Oraghi Ardebili Z, Oraghi Ardebili N (2021b) Synthesis and characterization of zinc oxide nanoparticles and their impact on plants. In: Singh VP, Singh S, Tripathi DK, Prasad SM, Chauhan DK (eds) Plant responses to nanomaterials nanotechnology in the life sciences. Springer, Cham, pp 33–93

    Chapter  Google Scholar 

  • Iranbakhsh A, Oraghi Ardebili Z, Oraghi Ardebili N (2022) Chapter 27—Gene regulation by NO in plants. In: Vijay PS, Samiksha S, Durgesh KT, Romero-Puertas MC, Luisa MS (eds) Nitric oxide in plant biology. Academic Press, Cambridge, pp 615–651

    Chapter  Google Scholar 

  • Jordan JT, Oates RP, Subbiah S, Payton PR, Singh KP, Shah SA, Green MJ, Klein DM, Cañas-Carrell JE (2020) Carbon nanotubes affect early growth, flowering time and phytohormones in tomato. Chemosphere 256:127042

    Article  CAS  PubMed  Google Scholar 

  • Joshi A, Kaur S, Dharamvir K, Nayyar H, Verma G (2018) Multi-walled carbon nanotubes applied through seed-priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.). J Sci Food Agric 98(8):3148–3160

    CAS  PubMed  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, De Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135

    Article  CAS  PubMed  Google Scholar 

  • Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interface 5:7965–7973

    Article  CAS  Google Scholar 

  • Lahiani MH, Dervishi E, Ivanov I, Chen J, Khodakovskaya M (2016) Comparative study of plant responses to carbon-based nanomaterials with different morphologies. Nanotechnology 27:65102. https://doi.org/10.1088/0957-4484/27/26/265102

    Article  CAS  Google Scholar 

  • Lahiani MH, Nima ZA, Villagarcia H, Biris AS, Khodakovskaya MV (2018) Assessment of effects of the long-term exposure of agricultural crops to carbon nanotubes. J Agric Food Chem 66:6654–6662. https://doi.org/10.1021/acs.jafc.7b01863

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler H, Wellburn A (1983) Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Transact 603:591–592

    Article  Google Scholar 

  • Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5(10):1128–1132

    CAS  PubMed  Google Scholar 

  • Martínez-Ballesta MC, Zapata L, ChalbiN CM (2016) Multi walled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. J Nanobiotechnol 14(1):42

    Article  Google Scholar 

  • Martinez-Ballesta MC, Chelbi N, Lopez-Zaplana A, Carvajal M (2020) Discerning the mechanism of the multiwalled carbon nanotubes effect on root cell water and nutrient transport. Plant Physiol Biochem 146:23–30

    Article  CAS  PubMed  Google Scholar 

  • Mathew S, Tiwari DK, Tripathi D (2021) Interaction of carbon nanotubes with plant system: a review. Carbon Lett 31(2):167–176

    Article  Google Scholar 

  • Mirakhorli T, Oraghi Ardebili Z, Ladan-Moghadam A, Danaee E (2021a) Nitric oxide improved growth and yield in soybean (Glycine max) by mediating physiological, anatomical, and transcriptional modifications. J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10389-0

    Article  Google Scholar 

  • Mirakhorli T, Ardebili ZO, Ladan-Moghadam A, Danaee E (2021b) Bulk and nanoparticles of zinc oxide exerted their beneficial effects by conferring modifications in transcription factors, histone deacetylase, carbon and nitrogen assimilation, antioxidant biomarkers, and secondary metabolism in soybean. PLoS ONE 16(9):e0256905. https://doi.org/10.1371/journal.pone.0256905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moghadam VA, Iranbakhsh A, Saadatmand S, Ebadi M, Oraghi Ardebili Z (2021) New insights into the transcriptional, epigenetic, and physiological responses to zinc oxide nanoparticles in Datura stramonium; potential species for phytoremediation. J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10305-6

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Neysanian M, Iranbakhsh A, Ahmadvand R, Oraghi Ardebili Z, Ebadi M (2020) Comparative efficacy of selenate and selenium nanoparticles for improving growth, productivity, fruit quality, and postharvest longevity through modifying nutrition, metabolism, and gene expression in tomato; potential benefits and risk assessment. PLoS ONE 15(12):e0244207. https://doi.org/10.1371/journal.pone.0244207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oloumi H, Mousavi EA, Nejad RM (2018) Multi-wall carbon nanotubes effects on plant seedlings growth and cadmium/lead uptake in vitro. Russian J Plant Physiol 65(2):260–268

    Article  CAS  Google Scholar 

  • Pejam F, Ardebili ZO, Ladan-Moghadam A, Danaee E (2021) Zinc oxide nanoparticles mediated substantial physiological and molecular changes in tomato. PLoS ONE 16(3):e028778. https://doi.org/10.1371/journal.pone.0248778

    Article  CAS  Google Scholar 

  • Rahmani N, Radjabian T, Soltani BM (2020) Impacts of foliar exposure to multi-walled carbon nanotubes on physiological and molecular traits of Salvia verticillata L., as a medicinal plant. Plant Physiol Biochem 150:27–38

    Article  CAS  PubMed  Google Scholar 

  • Rajaee Behbahani S, Iranbakhsh A, Ebadi M, Majd A, Ardebili ZO (2020) Red elemental selenium nanoparticles mediated substantial variations in growth, tissue differentiation, metabolism, gene transcription, epigenetic cytosine DNA methylation, and callogenesis in bittermelon (Momordica charantia); an in vitro experiment. PLoS ONE 15(7):e0235556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren L, Deng S, Chu Y, Zhang Y, Zhao H, Chen H, Zhang D (2020) Single-wall carbon nanotubes improve cell survival rate and reduce oxidative injury in cryopreservation of Agapanthus praecox embryogenic callus. Plant Methods 16(1):1–12

    Article  Google Scholar 

  • Ru M, Wang K, Bai Z, Peng L, He S, Wang Y, Liang Z (2017) A tyrosine aminotransferase involved in rosmarinic acid biosynthesis in Prunella vulgaris L. Sci Rep 7(1):4892

    Article  PubMed  PubMed Central  Google Scholar 

  • Salah SM, Yajing G, Dongdong C, Jie L, Aamir N, Qijuan H, Weimin H, Mingyu N, Jin H (2015) Seed priming with polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under nano-ZnO stress. Sci Rep 5:14278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samadi S, Saharkhiz MJ, Azizi M, Samiei L, Ghorbanpour M (2020) Multi-walled carbon nanotubes stimulate growth, redox reactions and biosynthesis of antioxidant metabolites in Thymus daenensis celak. In vitro. Chemosphere 249:126069

    Article  CAS  PubMed  Google Scholar 

  • Seddighinia FS, Iranbakhsh A, Oraghi Ardebili Z (2020) Seed priming with cold plasma and multi-walled carbon nanotubes modified growth, tissue differentiation, anatomy, and yield in bitter melon (Momordica charantia). J Plant Growth Regul 39:87–98. https://doi.org/10.1007/s00344-019-09965-2

    Article  CAS  Google Scholar 

  • Seddighinia FS, Iranbakhsh A, Ardebili ZO, Soleimanpour S (2021) Seed-priming with cold plasma and supplementation of nutrient solution with carbon nanotube enhanced carotenoid contents and the expression of psy and pds in Bitter melon (Momordica charantia). J Appl Bot Food Quality 94:7–14

    CAS  Google Scholar 

  • Sharifi P, Bidabadi S, Zaid A, Latef A (2021) Efficacy of multi-walled carbon nanotubes in regulating growth performance, total glutathione and redox state of Calendula officinalis L. cultivated on Pb and Cd polluted soil. Ecotoxicol Environmen Safety 213:112051

    Article  CAS  Google Scholar 

  • Skała E, Wysokińska H (2004) In vitro regeneration of Salvia nemorosa L. from shoot tips and leaf explants. In Vitro Cell Dev Biol Plant 40(6):596–602

    Article  Google Scholar 

  • Tabatabaee S, Iranbakhsh A, Shamili M, Ardebili ZO (2021) Copper nanoparticles mediated physiological changes and transcriptional variations in microRNA159 (miR159) and mevalonate kinase (MVK) in pepper; potential benefits and phytotoxicity assessment. J Environ Chem Engin 9(5):106151

    Article  CAS  Google Scholar 

  • Tan XM, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47(15):3479–3487

    Article  CAS  Google Scholar 

  • Wang C, Liu H, Chen J, Tian Y, Shi J, Li D, Guo C, Ma Q (2014) Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean (Vicia faba L.) seedlings under combined stress of lead and cadmium. J Hazard Mat 274:404–412

    Article  CAS  Google Scholar 

  • Yan S, Zhao L, Li H, Zhang Q, Tan J, Huang M, He S, Li L (2013) Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. J Hazard Mat 246:110–118

    Article  Google Scholar 

  • Yan S, Zhang H, Huang Y, Tan J, Wang P, Wang Y, Hou H, Huang J, Li L (2016) Single-wall and multi-wall carbon nanotubes promote rice root growth by eliciting the similar molecular pathways and epigenetic regulation. IET Nanobiotechnol 10(4):222–229

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Deng C, Wu Y, Dai Z, Tang Q, Cheng C, Xu Y, Hu R, Liu C, Chen X, Zhang X (2021) Insights into the mechanism of multi-walled carbon nanotubes phytotoxicity in Arabidopsis through transcriptome and m6A methylome analysis. Sci Total Environ 787:147510

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. K. Khosraviani for his benevolent and professional collaborations in the research procedure.

Author information

Authors and Affiliations

Authors

Contributions

SG: conceptualization, resources, methodology, investigation, review, and editing; AI: conceptualization, visualization, investigation, methodology, formal analysis, writing-original draft, review, and editing; ME: conceptualization, visualization, investigation, formal analysis, software analysis, review, and editing; ZOA: conceptualization, visualization, methodology, investigation, software analysis, formal analysis, review, and editing. All authors have contributed, seen, and approved the manuscript.

Corresponding author

Correspondence to Alireza Iranbakhsh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or other personal interests.

Additional information

Handling Editor: Durgesh Kumar Tripathi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, S., Iranbakhsh, A., Ebadi, M. et al. Carboxylic Acid-Functionalized Multi-Walled Carbon Nanotubes (COOH-MWCNTs) Elicit Concordant Variations in DNA Cytosine Methylation, Gene Expression, Growth, Morphogenesis, Metabolism, and Callogenesis in Salvia nemorosa; An In Vitro Biological Assessment. J Plant Growth Regul 42, 4557–4569 (2023). https://doi.org/10.1007/s00344-023-10924-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-023-10924-1

Keywords

Navigation