Skip to main content
Log in

Interaction of carbon nanotubes with plant system: a review

  • Review
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Recent years have witnessed remarkable development in the field of nanotechnology and it has been affirmed that carbon-based nanomaterials have wide applications in agriculture, industrial, biomedical and environmental sectors. Due to distinctive physicochemical properties of the carbon nanotubes (CNTs), they have been extensively utilized in plant science as a growth promoter, and thus, could be a boon for biomass production of agricultural products. Studies suggest that CNTs help increase the plant’s ability to absorb water and essential nutrients, thereby increasing growth. Apart from this, CNTs have been scrutinized for their utilization in genetic engineering for the delivery of genes, proteins or drugs. However, the literature discloses mixed effects of CNTs exposure on plants like in inducing oxidative stress by generating reactive oxygen species (ROS). Moreover, studies concerning CNTs interaction with plant system is at a nascent stage and needs further investigations to explore the mechanisms influencing the growth and toxicity in plants. Therefore, this review attempts to highlight the current literature on CNTs (including both single walled and multi walled) exposure on plants. It also explores unresolved challenges, as well as recommendations to ensure sustainable development of CNTs while minimizing any possible adverse health impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Endo M, Strano MS, Ajayan PM (2007) Potential applications of carbon nanotubes. carbon nanotubes. Springer, Berlin, Heidelberg, pp 13–62

    Google Scholar 

  2. Herrero-Latorre C, Álvarez-Méndez J, Barciela-García J, García-Martín S, Peña-Crecente R (2015) Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples: A review. Anal Chim Acta 853:77–94

    CAS  Google Scholar 

  3. Gandhi K, Lari S, Tripathi D, Kanade G (2016) Advanced oxidation processes for the treatment of chlorpyrifos, dimethoate and phorate in aqueous solution. J Water Reuse Desalin 6(1):195–203

    CAS  Google Scholar 

  4. Ren X, Chen C, Nagatsu M, Wang X (2011) Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J 170(2–3):395–410

    CAS  Google Scholar 

  5. Ambrosi A, Pumera M (2010) Regulatory peptides are susceptible to oxidation by metallic impurities within carbon nanotubes. Chem European J 16(6):1786–1792

    CAS  Google Scholar 

  6. Tiwari D, Dasgupta-Schubert N, Cendejas LV, Villegas J, Montoya LC, García SB (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 4(5):577–591

    CAS  Google Scholar 

  7. Khodakovskaya MV, De Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS nano 6(3):2128–2135

    CAS  Google Scholar 

  8. Verma SK, Das AK, Gantait S, Kumar V, Gurel E (2019) Applications of carbon nanomaterials in the plant system: a perspective view on the pros and cons. Sci Total Environ 667:485–499

    CAS  Google Scholar 

  9. Tripathi D, Singh K, Mansoori MA (2019) Soil Pollution: Health Implications and Management. In: Kumar M, Tiwari RR (eds) Recent Trends and Advances in Environmental Health, vol 1. Nova Science Publishers. New York, USA, pp 41–64

    Google Scholar 

  10. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Protec 35:64–70

    CAS  Google Scholar 

  11. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227

    CAS  Google Scholar 

  12. Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9(1):115–123

    CAS  Google Scholar 

  13. Kwak S-Y, Lew TTS, Sweeney CJ, Koman VB, Wong MH, Bohmert-Tatarev K, Snell KD, Seo JS, Chua N-H, Strano MS (2019) Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat Nanotechnol 14(5):447–455

    CAS  Google Scholar 

  14. Begum P, Fugetsu B (2012) Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant. J Hazard Mater 243:212–222

    CAS  Google Scholar 

  15. Lin C, Fugetsu B, Su Y, Watari F (2009) Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. J Hazard Mater 170(2–3):578–583. https://doi.org/10.1016/j.jhazmat.2009.05.025

    Article  CAS  Google Scholar 

  16. Chen M, Zhou S, Zhu Y, Sun Y, Zeng G, Yang C, Xu P, Yan M, Liu Z, Zhang W (2018) Toxicity of carbon nanomaterials to plants, animals and microbes: Recent progress from 2015-present. Chemosphere 206:255–264

    CAS  Google Scholar 

  17. Hao Y, Ma C, Zhang Z, Song Y, Cao W, Guo J, Zhou G, Rui Y, Liu L, Xing B (2018) Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem. Environ Pollut 232:123–136

    CAS  Google Scholar 

  18. Simon-Deckers A, Loo S, Mayne-L'hermite M, Herlin-Boime N, Menguy N, Reynaud C, Gouget B, Carriere M (2009) Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol 43(21):8423–8429. https://doi.org/10.1021/es9016975

    Article  CAS  Google Scholar 

  19. Su W-C, Cheng YS (2014) Carbon nanotubes size classification, characterization and nasal airway deposition. Inhalation Toxicol 26(14):843–852

    CAS  Google Scholar 

  20. Jackson P, Jacobsen NR, Baun A, Birkedal R, Kühnel D, Jensen KA, Vogel U, Wallin H (2013) Bioaccumulation and ecotoxicity of carbon nanotubes. Chem Cent J 7(1):154

    Google Scholar 

  21. Ganesh E (2013) Single walled and multi walled carbon nanotube structure, synthesis and applications. Int J Innov Technol Explor Eng 2(4):311–320

    Google Scholar 

  22. Tománek D, Jorio A, Dresselhaus MS, Dresselhaus G (2007) Introduction to the important and exciting aspects of carbon-nanotube science and technology. Carbon Nanotubes. Springer, Berlin, Heidelberg, pp 1–12

    Google Scholar 

  23. Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, Abasi M, Hanifehpour Y, Joo SW (2014) Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9(1):393

    Google Scholar 

  24. Chico L, Crespi VH, Benedict LX, Louie SG, Cohen ML (1996) Pure carbon nanoscale devices: nanotube heterojunctions. Phys Rev Lett 76(6):971

    CAS  Google Scholar 

  25. Vander Wal RL, Berger G, Ticich T (2003) Carbon nanotube synthesis in a flame using laser ablation for in situ catalyst generation. Appl Phys A 77(7):885–889

    CAS  Google Scholar 

  26. Ajayan P, Ebbesen T (1997) Nanometre-size tubes of carbon. Rep Prog Phys 60(10):1025

    CAS  Google Scholar 

  27. Huczko A (2002) Synthesis of aligned carbon nanotubes. Appl Phys A 74(5):617–638

    CAS  Google Scholar 

  28. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    CAS  Google Scholar 

  29. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG (1996) Crystalline ropes of metallic carbon nanotubes. Science 273(5274):483–487

    CAS  Google Scholar 

  30. Cheng H, Li F, Su G, Pan H, He L, Sun X, Dresselhaus M (1998) Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl Phys Lett 72(25):3282–3284

    CAS  Google Scholar 

  31. Szabó A, Perri C, Csató A, Giordano G, Vuono D, Nagy JB (2010) Synthesis methods of carbon nanotubes and related materials. Materials 3(5):3092–3140

    Google Scholar 

  32. Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis. J Mater Chem 21(40):15872–15884

    CAS  Google Scholar 

  33. Tiwari DK, Valenzuela J, Tripathi D, Mathew S (2020) Fabrication of carbon based nanostructured materials on Si/SiO2substrate and their growth mechanism over different catalysts. Nanomed Nanotechnol Open Access https://doi.org/10.23880/nnoa-16000175

  34. Tendeloo G, Nagy J (1998) Purification of catalytically produced multi-wall nanotubes. J Chem Soc Faraday Trans 94(24):3753–3758

    Google Scholar 

  35. Djordjević V, Djustebek J, Cvetićanin J, Velićknović S, Veljković M, Bokorov M, Stojić BB, Nešković O (2006) Methods of purification and characterization of carbon nanotubes. J Optoelectron Adv Mater 8(4):1631–1634

    Google Scholar 

  36. Shanov V, Yun Y-H, Schulz MJ (2006) Synthesis and characterization of carbon nanotube materials. J University Chem Technol Metall 41(4):377–390

    CAS  Google Scholar 

  37. Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng, B 119(2):105–118

    Google Scholar 

  38. Mahalingam P, Parasuram B, Maiyalagan T, Sundaram S (2012) Chemical Methods for purification of carbon nanotubes–a review. J Environ Nanotechnol 1(1):53–61

    Google Scholar 

  39. Hou P-X, Liu C, Cheng H-M (2008) Purification of carbon nanotubes. Carbon 46(15):2003–2025

    CAS  Google Scholar 

  40. Du J, Wang S, You H, Zhao X (2013) Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human: a review. Environ Toxicol Pharmacol 36(2):451–462

    CAS  Google Scholar 

  41. Sun Y-P, Fu K, Lin Y, Huang W (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35(12):1096–1104

    CAS  Google Scholar 

  42. Wepasnick KA, Smith BA, Bitter JL, Fairbrother DH (2010) Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem 396(3):1003–1014

    CAS  Google Scholar 

  43. Li J, He Y, Han Y, Liu K, Wang J, Li Q, Fan S, Jiang K (2012) Direct identification of metallic and semiconducting single-walled carbon nanotubes in scanning electron microscopy. Nano Lett 12(8):4095–4101

    CAS  Google Scholar 

  44. García-Gutiérrez MC, Nogales A, Hernández JJ, Rueda DR, Ezquerra TA (2007) X-ray scattering applied to the analysis of carbon nanotubes, polymers and nanocomposites. Opt Pura Apl 40(2):195–205

    Google Scholar 

  45. Lopez-Lorente A, Simonet B, Valcárcel M (2014) Raman spectroscopic characterization of single walled carbon nanotubes: influence of the sample aggregation state. Analyst 139(1):290–298

    CAS  Google Scholar 

  46. Zang Z, Hu Z, Li Z, He Q, Chang X (2009) Synthesis, characterization and application of ethylenediamine-modified multiwalled carbon nanotubes for selective solid-phase extraction and preconcentration of metal ions. J Hazard Mater 172(2–3):958–963

    CAS  Google Scholar 

  47. Attal S, Thiruvengadathan R, Regev O (2006) Determination of the concentration of single-walled carbon nanotubes in aqueous dispersions using UV− Visible absorption spectroscopy. Anal Chem 78(23):8098–8104

    CAS  Google Scholar 

  48. Wenseleers W, Vlasov II, Goovaerts E, Obraztsova ED, Lobach AS, Bouwen A (2004) Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv Func Mater 14(11):1105–1112

    CAS  Google Scholar 

  49. Haggenmueller R, Rahatekar SS, Fagan JA, Chun J, Becker ML, Naik RR, Krauss T, Carlson L, Kadla JF, Trulove PC (2008) Comparison of the quality of aqueous dispersions of single wall carbon nanotubes using surfactants and biomolecules. Langmuir 24(9):5070–5078

    CAS  Google Scholar 

  50. Grossiord N, Regev O, Loos J, Meuldijk J, Koning CE (2005) Time-dependent study of the exfoliation process of carbon nanotubes in aqueous dispersions by using UV− Visible spectroscopy. Anal Chem 77(16):5135–5139

    CAS  Google Scholar 

  51. Schierz A, Parks AN, Washburn KM, Chandler GT, Ferguson PL (2012) Characterization and quantitative analysis of single-walled carbon nanotubes in the aquatic environment using near-infrared fluorescence spectroscopy. Environ Sci Technol 46(22):12262–12271

    CAS  Google Scholar 

  52. Pang LS, Saxby JD, Chatfield SP (1993) Thermogravimetric analysis of carbon nanotubes and nanoparticles. J Phys Chem 97(27):6941–6942

    CAS  Google Scholar 

  53. Chen C-M, Chen M, Leu F-C, Hsu S-Y, Wang S-C, Shi S-C, Chen C-F (2004) Purification of multi-walled carbon nanotubes by microwave digestion method. Diam Relat Mater 13(4–8):1182–1186

    CAS  Google Scholar 

  54. Mansfield E, Kar A, Hooker SA (2010) Applications of TGA in quality control of SWCNTs. Anal Bioanal Chem 396(3):1071–1077

    CAS  Google Scholar 

  55. Duesberg G, Blau W, Byrne H, Muster J, Burghard M, Roth S (1999) Chromatography of carbon nanotubes. Synth Met 103(1–3):2484–2485

    CAS  Google Scholar 

  56. Flavel BS, Moore KE, Pfohl M, Kappes MM, Hennrich F (2014) Separation of single-walled carbon nanotubes with a gel permeation chromatography system. ACS Nano 8(2):1817–1826

    CAS  Google Scholar 

  57. Lopez-Pastor M, Domínguez-Vidal A, Ayora-Canada M, Simonet B, Lendl B, Valcarcel M (2008) Separation of single-walled carbon nanotubes by use of ionic liquid-aided capillary electrophoresis. Anal Chem 80(8):2672–2679

    CAS  Google Scholar 

  58. Patel A, Tiwari S, Parihar P, Singh R, Prasad SM (2019) Carbon nanotubes as plant growth regulators: impacts on growth, reproductive system, and soil microbial community. In: Nanomaterials in plants, algae and microorganisms. Academic Press, pp 23–42

  59. Yan S, Zhao L, Li H, Zhang Q, Tan J, Huang M, He S, Li L (2013) Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. J Hazard Mater 246:110–118

    Google Scholar 

  60. Zhang H, Yue M, Zheng X, Xie C, Zhou H, Li L (2017) Physiological effects of single-and multi-walled carbon nanotubes on rice seedlings. IEEE Trans Nanobiosci 16(7):563–570

    Google Scholar 

  61. Caa JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environm Toxicol Chem Int J 27(9):1922–1931

    Google Scholar 

  62. Pourkhaloee A, Haghighi M, Saharkhiz MJ, Jouzi H, Doroodmand MM (2011) Carbon nanotubes can promote seed germination via seed coat penetration. Seed Technol 33(2):155–169

    Google Scholar 

  63. Haghighi M, da Silva JAT (2014) The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species. J Crop Sci Biotechnol 17(4):201–208

    Google Scholar 

  64. Flores D, Chacón R, Alvarado L, Schmidt A, Alvarado C, Chaves J (2014) Effect of using two different types of carbon nanotubes for blackberry (Rubus adenotrichos) in vitro plant rooting, growth and histology. Am J Plant Sci 5(24):3510

    Google Scholar 

  65. Khodakovskaya MV, De Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135

    CAS  Google Scholar 

  66. Alimohammadi M, Xu Y, Wang D, Biris AS, Khodakovskaya MV (2011) Physiological responses induced in tomato plants by a two-component nanostructural system composed of carbon nanotubes conjugated with quantum dots and its in vivo multimodal detection. Nanotechnology 22(29):295101

    Google Scholar 

  67. Hatami M, Hadian J, Ghorbanpour M (2017) Mechanisms underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol. J Hazard Mater 324:306–320

    CAS  Google Scholar 

  68. Sun W, Shahrajabian MH, Huang Q (2020) Soybean seeds treated with single walled carbon nanotubes (SwCNTs) showed enhanced drought tolerance during germination. Int J Adv Biol Biomed Res (IJABBR) 8:9–16

    CAS  Google Scholar 

  69. Corredor E, Testillano PS, Coronado M-J, González-Melendi P, Fernández-Pacheco R, Marquina C, Ibarra MR, de la Fuente JM, Rubiales D, Pérez-de-Luque A (2009) Nanoparticle penetration and transport in living pumpkin plants: in situsubcellular identification. BMC Plant Biol 9(1):45

    Google Scholar 

  70. Wu Y, Phillips JA, Liu H, Yang R, Tan W (2008) Carbon nanotubes protect DNA strands during cellular delivery. ACS Nano 2(10):2023–2028

    CAS  Google Scholar 

  71. Martínez-Ballesta MC, Zapata L, Chalbi N, Carvajal M (2016) Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. J Nanobiotechnol 14(1):42

    Google Scholar 

  72. Martinez-Ballesta MC, Chelbi N, Lopez-Zaplana A, Carvajal M (2020) Discerning the mechanism of the multiwalled carbon nanotubes effect on root cell water and nutrient transport. Plant Physiol Biochem 146:23–30

    CAS  Google Scholar 

  73. Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3(3):1176–1181

    CAS  Google Scholar 

  74. Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 5(16):7965–7973

    CAS  Google Scholar 

  75. Tiwari D, Dasgupta-Schubert N, Villasenor L, Tripathi D, Villegas J (2013) Interaction of carbon nanotubes with mineral nutrients for the promotion of growth of tomato seedlings. Nano Studies 7:87–96

    Google Scholar 

  76. Mondal A, Basu R, Das S, Nandy P (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res 13(10):4519

    CAS  Google Scholar 

  77. Taha RA, Hassan MM, Ibrahim EA, Baker NHA, Shaaban EA (2016) Carbon nanotubes impact on date palm in vitro cultures. Plant Cell Tissue Organ Culture (PCTOC) 127(2):525–534

    CAS  Google Scholar 

  78. Smirnova E, Gusev A, Zaytseva O, Sheina O, Tkachev A, Kuznetsova E, Lazareva E, Onishchenko G, Feofanov A, Kirpichnikov M (2012) Uptake and accumulation of multiwalled carbon nanotubes change the morphometric and biochemical characteristics of Onobrychis arenaria seedlings. Front Chem Sci Eng 6(2):132–138

    CAS  Google Scholar 

  79. Larue C, Pinault M, Czarny B, Georgin D, Jaillard D, Bendiab N, Mayne-L’Hermite M, Taran F, Dive V, Carrière M (2012) Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed. J Hazard Mater 227:155–163

    Google Scholar 

  80. Pilevar ZT, Mahmoodzadeh H, Eshaghi A (2015) Impact of multi-walled carbon nanotubes on seed germination and seedling growth of Cichorium intybus L. L J Biol Environ Sci 6(1):438–445

    Google Scholar 

  81. Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44(6):1962–1967

    CAS  Google Scholar 

  82. Dasgupta-Schubert N, Tiwari D, Francis ER, Torres PM, Villaseñor L, Mora CV (2017) Plant responses to nano and micro structured carbon allotropes: Water imbibition by maize seeds upon exposure to multiwalled carbon nanotubes and activated carbon. Adv Nano Res 5(3):245

    Google Scholar 

  83. Pereira MM, Mouton L, Yéprémian C, Couté A, Lo J, Marconcini JM, Ladeira LO, Raposo NR, Brandão HM, Brayner R (2014) Ecotoxicological effects of carbon nanotubes and cellulose nanofibers in Chlorella vulgaris. J Nanobiotechnol 12(1):15

    Google Scholar 

  84. Ferguson PL, Chandler GT, Templeton RC, DeMarco A, Scrivens WA, Englehart BA (2008) Influence of sediment− amendment with single-walled carbon nanotubes and diesel soot on bioaccumulation of hydrophobic organic contaminants by benthic invertebrates. Environ Sci Technol 42(10):3879–3885

    CAS  Google Scholar 

  85. Petersen EJ, Huang Q, Weber J, Walter J (2008) Bioaccumulation of radio-labeled carbon nanotubes by Eisenia foetida. Environ Sci Technol 42(8):3090–3095

    CAS  Google Scholar 

  86. Bullard-Dillard R, Creek KE, Scrivens WA, Tour JM (1996) Tissue Sites of Uptake of14C-Labeled C60. Bioorg Chem 24(4):376–385

    CAS  Google Scholar 

  87. Wang C, Liu H, Chen J, Tian Y, Shi J, Li D, Guo C, Ma Q (2014) Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean (Vicia faba L.) seedlings under combined stress of lead and cadmium. J Hazard Mater 274:404–412

    CAS  Google Scholar 

  88. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5(10):1128–1132

    CAS  Google Scholar 

  89. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43(24):9473–9479

    CAS  Google Scholar 

  90. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250

    CAS  Google Scholar 

  91. Ghosh M, Chakraborty A, Bandyopadhyay M, Mukherjee A (2011) Multi-walled carbon nanotubes (MWCNT): induction of DNA damage in plant and mammalian cells. J Hazard Mater 197:327–336

    CAS  Google Scholar 

  92. Zhai G, Gutowski SM, Walters KS, Yan B, Schnoor JL (2015) Charge, size, and cellular selectivity for multiwall carbon nanotubes by maize and soybean. Environ Sci Technol 49(12):7380–7390

    CAS  Google Scholar 

  93. Chen G, Qiu J, Liu Y, Jiang R, Cai S, Liu Y, Zhu F, Zeng F, Luan T, Ouyang G (2015) Carbon nanotubes act as contaminant carriers and translocate within plants. Scientific Rep 5:15682

    CAS  Google Scholar 

  94. Miralles P, Johnson E, Church TL, Harris AT (2012) Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J R Soc Interface 9(77):3514–3527

    CAS  Google Scholar 

  95. Tan X-m, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47(15):3479–3487

    CAS  Google Scholar 

  96. Tan X-m, Fugetsu B (2007) Multi-walled carbon nanotubes interact with cultured rice cells: evidence of a self-defense response. J Biomed Nanotechnol 3(3):285–288

    CAS  Google Scholar 

  97. Ghodake G, Seo YD, Park D, Lee DS (2010) Phytotoxicity of carbon nanotubes assessed by Brassica juncea and Phaseolus mungo. J Nanoelectron Optoelectron 5(2):157–160

    CAS  Google Scholar 

  98. Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400–408

    CAS  Google Scholar 

Download references

Acknowledgement

Authors are highly grateful for the CONACYT Basic Science project (A1-S-47641), DST FIST Laboratory, Vimala College (Autonomous), Thrissur and DBT STAR College Scheme, Department of Biotechnology, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvy Mathew.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathew, S., Tiwari, D.K. & Tripathi, D. Interaction of carbon nanotubes with plant system: a review. Carbon Lett. 31, 167–176 (2021). https://doi.org/10.1007/s42823-020-00195-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00195-1

Keywords

Navigation