Skip to main content

Synthesis and Characterization of Zinc Oxide Nanoparticles and Their Impact on Plants

  • Chapter
  • First Online:
Plant Responses to Nanomaterials

Abstract

Nanotechnology as a novel scientific approach to sustainable agriculture has gained considerable attention. Taking metal oxide nanoparticles into account, zinc oxide nanoparticles (nZnO) are the most consumed in various industries, like medicine, food, and agriculture. An inevitable entry of nZnO to the environment due to the intensive application, production, and disposal process has provoked tremendous concerns on the ecosystem, especially plants as a key initiator agent of a food chain. In this chapter, the literature indicates various methods of nZnO synthesis (chemical and biogenic methods). Also, bio-uptake, translocation, accumulation, and phytotoxicity of this nano-compound will be presented. Furthermore, some references to its impact on plant microbiome are included. Moreover, we discuss the morphological, anatomical, biochemical, physiological, and molecular basis of plant responses to nZnO. In particular, we mainly focus on the effects of nZnO on seed germination, nutrition, photosynthesis, secondary metabolism, antioxidant system, defense-responsive genes, transcriptome, and soil microbiome. In addition, behaviors of seed, cell, and tissue following supplementations of culture medium with nZnO in in vitro condition will be focused. Herein, we try to provide a theoretical foundation for contributing to possible future exploitation in diverse agricultural activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal H, Kumar SV, Rajeshkumar S (2017) A review on green synthesis of zinc oxide nanoparticles–An eco-friendly approach. Resource-Efficient Technologies 3(4):406–413

    Article  Google Scholar 

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51(3):167–173

    Article  CAS  Google Scholar 

  • Ahmed S, Chaudhry SA, Ikram S (2017) A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. J Photochem Photobiol B Biol 166:272–284

    Article  CAS  Google Scholar 

  • Alharby HF, Metwali EM, Fuller MP, Aldhebiani AY (2016) The alteration of mRNA expression of SOD and GPX genes, and proteins in tomato (Lycopersicon esculentum Mill) under stress of NaCl and/or ZnO nanoparticles. Saudi J Biol Sci 23(6):773–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allahverdiyeva Y, Battchikova N, Brosché M, Fujii H, Kangasjärvi S, Mulo P, Mähönen AP, Nieminen K, Overmyer K, Salojärvi J, Wrzaczek M (2015) Integration of photosynthesis, development and stress as an opportunity for plant biology. New Phytol 208(3):647–655

    Article  PubMed  Google Scholar 

  • Ambika S, Sundrarajan M (2015) Green biosynthesis of ZnO nanoparticles using Vitex negundo L. extract: spectroscopic investigation of interaction between ZnO nanoparticles and human serum albumin. J Photochem Photobiol B Biol 149:143–148

    Article  CAS  Google Scholar 

  • Anderson AJ, McLean JE, Jacobson AR, Britt DW (2017) CuO and ZnO nanoparticles modify interkingdom cell signaling processes relevant to crop production. J Agric Food Chem 66(26):6513–6524

    Article  PubMed  CAS  Google Scholar 

  • Asgari-Targhi G, Iranbakhsh A, Ardebili ZO (2018) Potential benefits and phytotoxicity of bulk and nano-chitosan on the growth, morphogenesis, physiology, and micropropagation of Capsicum annuum. Plant Physiol Biochem 127:393–402

    Article  CAS  PubMed  Google Scholar 

  • Azizi S, Ahmad MB, Namvar F, Mohamad R (2014) Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalgae Sargassum muticum aqueous extract. Mater Lett 116:275–277

    Article  CAS  Google Scholar 

  • Azizi S, Mohamad R, Bahadoran A, Bayat S, Rahim RA, Ariff A et al (2016) Effect of annealing temperature on antimicrobial and structural properties of bio-synthesized zinc oxide nanoparticles using flower extract of Anchusa italica. J Photochem Photobiol B Biol 161:441–449

    Article  CAS  Google Scholar 

  • Babajani A, Iranbakhsh A, Ardebili ZO, Eslami B (2019a) Differential growth, nutrition, physiology, and gene expression in Melissa officinalis mediated by zinc oxide and elemental selenium nanoparticles. Environ Sci Poll Res 26(24):24430–44

    Google Scholar 

  • Babajani A, Iranbakhsh A, Ardebili ZO, Eslami B (2019b) Seed priming with non-thermal plasma modified plant reactions to selenium or zinc oxide nanoparticles: cold plasma as a novel emerging tool for plant science. Plasma Chem Plasma Process 39(1):21–34

    Article  CAS  Google Scholar 

  • Bala N, Saha S, Chakraborty M, Maiti M, Das S, Basu R et al (2015) Green synthesis of zinc oxide nanoparticles using Hibiscus sabdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv 5(7):4993–5003

    Article  CAS  Google Scholar 

  • Bandyopadhyay S, Plascencia-Villa G, Mukherjee A, Rico CM, José-Yacamán M, Peralta-Videa JR, Gardea-Torresdey JL (2015) Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci Total Environ 515:60–69

    Article  PubMed  CAS  Google Scholar 

  • Ben-Moshe T, Frenk S, Dror I, Minz D, Berkowitz B (2013) Effects of metal oxide nanoparticles on soil properties. Chemosphere 90(2):640–646

    Article  CAS  PubMed  Google Scholar 

  • Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mat Sci Semicon Proc 32:55–61

    Article  CAS  Google Scholar 

  • Boonyanitipong P, Kositsup B, Kumar P, Baruah S, Dutta J (2011) Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. Int J Biosci Biochem Bioinform 1(4):282

    Google Scholar 

  • Bradfield SJ, Kumar P, White JC, Ebbs SD (2017) Zinc, copper, or cerium accumulation from metal oxide nanoparticles or ions in sweet potato: yield effects and projected dietary intake from consumption. Plant Physiol Biochem 110:128–137

    Article  CAS  PubMed  Google Scholar 

  • Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95(4):605–12

    Google Scholar 

  • Cavallini E, Matus JT, Finezzo L, Zenoni S, Loyola R, Guzzo F, Schlechter R, Ageorges A, Arce-Johnson P, Tornielli GB (2015) The phenylpropanoid pathway is controlled at different branches by a set of R2R3-MYB C2 repressors in grapevine. Plant Physiol 167(4):1448–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai H, Yao J, Sun J, Zhang C, Liu W, Zhu M, Ceccanti B (2015) The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil. Bull Environ Contam Toxicol 4:490–495

    Article  CAS  Google Scholar 

  • Chamani E, Karimi Ghalehtaki S, Mohebodini M, Ghanbari A (2015) The effect of zinc oxide nano particles and humic acid on morphological characters and secondary metabolite production in Lilium ledebourii Bioss. Iranian J Genetic Plant Breed 4(2):11–19

    Google Scholar 

  • Chaudhuri SK, Malodia L (2017) Biosynthesis of zinc oxide nanoparticles using leaf extract of Calotropis gigantea: characterization and its evaluation on tree seedling growth in nursery stage. Appl Nanosci 7(8):501–512

    Article  CAS  Google Scholar 

  • Chen J, Liu X, Wang C, Yin SS, Li XL, Hu WJ, Simon M, Shen ZJ, Xiao Q, Chu CC, Peng XX (2015) Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings. J Hazard Mater 297:173–182

    Article  CAS  PubMed  Google Scholar 

  • Chung I-M, Rahuman AA, Marimuthu S, Kirthi AV, Anbarasan K, Rajakumar G (2015) An investigation of the cytotoxicity and caspase-mediated apoptotic effect of green synthesized zinc oxide nanoparticles using Eclipta prostrata on human liver carcinoma cells. Nano 5(3):1317–1330

    CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212(4):475–486

    Article  CAS  PubMed  Google Scholar 

  • Çolak H, Karaköse E (2017) Green synthesis and characterization of nanostructured ZnO thin films using Citrus aurantifolia (lemon) peel extract by spin-coating method. J Alloy Compd 690:658–662

    Article  CAS  Google Scholar 

  • Das B, Khan MI, Jayabalan R, Behera SK, Yun S-I, Tripathy SK et al (2016) Understanding the antifungal mechanism of Ag@ ZnO core-shell nanocomposites against Candida krusei. Sci Rep 6:36403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De La Rosa G, Lopez-Moreno ML, Hernandez-Viezcas JA, Montes MO, Peralta-Videa J, Gardea-Torresdey J (2011) Toxicity and biotransformation of ZnO nanoparticles in the desert plants Prosopis juliflora-velutina, Salsola tragus and Parkinsonia florida. Int J Nanotechnol 8(6–7):492–506

    Article  Google Scholar 

  • De la Rosa G, López-Moreno ML, de Haro D, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl Chem 85(12):2161–2174

    Article  Google Scholar 

  • Demir E, Kaya N, Kaya B (2014) Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay. Turk J Biol 38:31–39

    Article  CAS  Google Scholar 

  • DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nature Nanotechnol 5(2):91

    Article  CAS  Google Scholar 

  • Diallo A, Ngom B, Park E, Maaza M (2015) Green synthesis of ZnO nanoparticles by Aspalathus linearis: structural & optical properties. J Alloy Compd 646:425–430

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14(9):1125

    Article  CAS  Google Scholar 

  • Dinesh R, Anandaraj M, Srinivasan V, Hamza S (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173:19–27

    Article  CAS  Google Scholar 

  • Dobrucka R, Długaszewska J (2016) Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J Biol Sci 23(4):517–523

    Article  CAS  PubMed  Google Scholar 

  • Dubey SP, Lahtinen M, Särkkä H, Sillanpää M (2010) Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids Surf B Biointerfaces 80(1):26–33

    Article  CAS  PubMed  Google Scholar 

  • Elhaj Baddar Z, Unrine JM (2018) Functionalized-ZnO-nanoparticle seed treatments to enhance growth and Zn content of wheat (Triticum aestivum) seedlings. J Agric Food Chem 66(46):12166–12178

    Article  CAS  PubMed  Google Scholar 

  • Elizabath A, Bahadur V, Misra P, Prasad VM, Thomas T (2017) Effect of different concentrations of iron oxide and zinc oxide nanoparticles on growth and yield of carrot (Daucus carota L.). J Pharmacogn Phytochem 6(4):1266–1269

    Google Scholar 

  • Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Raj GA (2015) Bio-approach: plant mediated synthesis of ZnO nanoparticles and their catalytic reduction of methylene blue and antimicrobial activity. Adv Powder Technol 26(6):1639–1651

    Article  CAS  Google Scholar 

  • Faizan M, Faraz A, Yusuf M, Khan ST, Hayat S (2018) Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica 56(2):678–686

    Article  CAS  Google Scholar 

  • Fatimah I, Pradita RY, Nurfalinda A (2016) Plant extract mediated of ZnO nanoparticles by using ethanol extract of Mimosa pudica leaves and coffee powder. Procedia Eng 148:43–48

    Article  CAS  Google Scholar 

  • Fazlzadeh M, Khosravi R, Zarei A (2017) Green synthesis of zinc oxide nanoparticles using Peganum harmala seed extract, and loaded on Peganum harmala seed powdered activated carbon as new adsorbent for removal of Cr (VI) from aqueous solution. Ecol Eng 103:180–190

    Article  Google Scholar 

  • Fukao Y, Ferjani A, Tomioka R, Nagasaki N, Kurata R, Nishimori Y, Fujiwara M, Maeshima M (2011) iTRAQ analysis reveals mechanisms of growth defects due to excess zinc in Arabidopsis. Plant Physiol 155(4):1893–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Gómez C, Babin M, Obrador A, Álvarez JM, Fernández MD (2015) Integrating ecotoxicity and chemical approaches to compare the effects of ZnO nanoparticles, ZnO bulk, and ZnCl2 on plants and microorganisms in a natural soil. Environ Sci Pollut Res 22(21):16803–16813

    Article  CAS  Google Scholar 

  • García-Gómez C, Obrador A, González D, Babín M, Fernández MD (2017) Comparative effect of ZnO NPs, ZnO bulk and ZnSO4 in the antioxidant defences of two plant species growing in two agricultural soils under greenhouse conditions. Sci Total Environ 589:11–24

    Google Scholar 

  • García-López J, Zavala-García F, Olivares-Sáenz E, Lira-Saldívar R, Díaz Barriga-Castro E, Ruiz-Torres N, Ramos-Cortez E, Vázquez-Alvarado R, Niño-Medina G (2018) Zinc oxide nanoparticles boosts phenolic compounds and antioxidant activity of Capsicum annuum L. during germination. Agronomy 8(10):215

    Article  CAS  Google Scholar 

  • Gawade V, Gavade N, Shinde H, Babar S, Kadam A, Garadkar K (2017) Green synthesis of ZnO nanoparticles by using Calotropis procera leaves for the photodegradation of methyl orange. J Mater Sci Mater Electron 28(18):14033–14039

    Article  CAS  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45(4):1659–1664

    Article  CAS  PubMed  Google Scholar 

  • Geetha M, Nagabhushana H, Shivananjaiah H (2016) Green mediated synthesis and characterization of ZnO nanoparticles using Euphorbia Jatropa latex as reducing agent. J Sci Adv Mater 1(3):301–310

    Google Scholar 

  • Ghasempour M, Iranbakhsh A, Ebadi M, Ardebili ZO (2019) Multi-walled carbon nanotubes improved growth, anatomy, physiology, secondary metabolism, and callus performance in Catharanthus roseus: an in vitro study. 3 Biotech 9(11):404

    Google Scholar 

  • Ghodake G, Seo YD, Lee DS (2011) Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mater 186(1):952–955

    Article  CAS  PubMed  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Jana A, Sinha S, Jothiramajayam M, Nag A, Chakraborty A, Mukherjee A, Mukherjee A (2016) Effects of ZnO nanoparticles in plants: cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutat Res Genet Toxicol Environ Mutagen 54:25–32

    Article  CAS  Google Scholar 

  • Govorov AO, Carmeli I (2007) Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect. Nano letters 7(3):620–5

    Google Scholar 

  • Grillo R, Abhilash PC, Fraceto LF (2016) Nanotechnology applied to bio-encapsulation of pesticides. J Nanosci Nanotechnol 16(1):1231–1234

    Article  CAS  PubMed  Google Scholar 

  • Gururani MA, Venkatesh J, Tran LS (2015) Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol Plant 8(9):1304–1320

    Article  CAS  PubMed  Google Scholar 

  • Hashemi S, Asrar Z, Pourseyedi S, Nadernejad N (2016) Green synthesis of ZnO nanoparticles by Olive (Olea europaea). IET Nanobiotechnol 10(6):400–404

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassan SS, El Azab WI, Ali HR, Mansour MS (2015) Green synthesis and characterization of ZnO nanoparticles for photocatalytic degradation of anthracene. Adv Nat Sci Nanosci 6(4):045012

    Article  CAS  Google Scholar 

  • Helaly MN, El-Metwally MA, El-Hoseiny H, Omar SA, El-Sheery NI (2014) Effect of nanoparticles on biological contamination of ‘in vitro’ cultures and organogenic regeneration of banana. Aust J Crop Sci 8(4):612

    CAS  Google Scholar 

  • Hernandez-Viezcas JA, Castillo-Michel H, Servin AD, Peralta-Videa JR, Gardea-Torresdey JL (2011) Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles. Chem Eng J 170(2–3):346–352

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Viezcas JA, Castillo-Michel H, Andrews JC, Cotte M, Rico C, Peralta-Videa JR, Ge Y, Priester JH, Holden PA, Gardea-Torresdey JL (2013) In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano 7(2):1415–1423

    Article  CAS  PubMed  Google Scholar 

  • Hinge SP, Pandit AB (2017) Solar-assisted synthesis of ZnO nanoparticles using lime juice: a green approach. Adv Nat Sci Nanosci 8(4):045006

    Article  CAS  Google Scholar 

  • Hossain Z, Mustafa G, Sakata K, Komatsu S (2016) Insights into the proteomic response of soybean towards Al2O3, ZnO, and Ag nanoparticles stress. J Hazard Mat 304:291–305

    Google Scholar 

  • Hu C, Liu Y, Li X, Li M (2013) Biochemical responses of duckweed (Spirodela polyrhiza) to zinc oxide nanoparticles. Arch Environ Contam Toxicol 64(4):643–51

    Google Scholar 

  • Hu C, Liu X, Li X, Zhao Y (2014) Evaluation of growth and biochemical indicators of Salvinia natans exposed to zinc oxide nanoparticles and zinc accumulation in plants. Environ Sci Pollut Res 21(1):732–739

    Article  CAS  Google Scholar 

  • Hulkoti NI, Taranath T (2014) Biosynthesis of nanoparticles using microbes—a review. Colloids Surf B Biointerfaces 121:474–483

    Article  CAS  PubMed  Google Scholar 

  • Iranbakhsh A, Ardebili NO, Ardebili ZO, Shafaati M, Ghoranneviss M (2018a) Non-thermal plasma induced expression of heat shock factor A4A and improved wheat (Triticum aestivum L.) growth and resistance against salt stress. Plasma Chem Plasma Process 38(1):29–44

    Article  CAS  Google Scholar 

  • Iranbakhsh A, Ardebili ZO, Ardebili NO, Ghoranneviss M, Safari N (2018b) Cold plasma relieved toxicity signs of nano zinc oxide in Capsicum annuum cayenne via modifying growth, differentiation, and physiology. Acta Physiol Plant 40(8):154

    Article  CAS  Google Scholar 

  • Iranbakhsh A, Ardebili ZO, Molaei H, Ardebili NO, Amini M (2020) Cold Plasma Up-Regulated Expressions of WRKY1 Transcription Factor and Genes Involved in Biosynthesis of Cannabinoids in Hemp (Cannabis sativa L.). Plasma Chem Plasma Process. https://doi.org/10.1007/s11090-020-10058-2

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650

    Article  CAS  Google Scholar 

  • Ishwarya R, Vaseeharan B, Kalyani S, Banumathi B, Govindarajan M, Alharbi NS, Kadaikunnan S, Al-Anbr MN, Khaled JM, Benelli G (2018) Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. J Photochem Photobiol Biol 178:249–58

    Google Scholar 

  • Iyer-Pascuzzi AS, Jackson T, Cui H, Petricka JJ, Busch W, Tsukagoshi H, Benfey PN (2011) Cell identity regulators link development and stress responses in the Arabidopsis root. Dev Cell 21(4):770–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jafarirad S, Mehrabi M, Divband B, Kosari-Nasab M (2016) Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: a mechanistic approach. Mater Sci Eng C 59:296–302

    Article  CAS  Google Scholar 

  • Jain A, Sinilal B, Dhandapani G, Meagher RB, Sahi SV (2013) Effects of deficiency and excess of zinc on morphophysiological traits and spatiotemporal regulation of zinc-responsive genes reveal incidence of cross talk between micro-and macronutrients. Environ Sci Technol 47(10):5327–5335

    Article  CAS  PubMed  Google Scholar 

  • Jain N, Bhargava A, Panwar J (2014) Enhanced photocatalytic degradation of methylene blue using biologically synthesized “protein-capped” ZnO nanoparticles. Chem Eng J 243:549–555

    Article  CAS  Google Scholar 

  • Jamdagni P, Khatri P, Rana J (2018) Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J King Saud Univ Sci 30(2):168–175

    Article  Google Scholar 

  • Javed R, Usman M, Yücesan B, Zia M, Gürel E (2017) Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant Physiol Biochem 110:94–99

    Article  CAS  PubMed  Google Scholar 

  • Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A et al (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc 90:78–84

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Pi J, Cai J (2018) The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl 2018:1062562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karnan T, Selvakumar SAS (2016) Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceum L.) peel extract and their photocatalytic activity on methyl orange dye. J Mol Struct 1125:358–365

    Article  CAS  Google Scholar 

  • Karthik S, Siva P, Balu KS, Suriyaprabha R, Rajendran V, Maaza M (2017) Acalypha indica–mediated green synthesis of ZnO nanostructures under differential thermal treatment: effect on textile coating, hydrophobicity, UV resistance, and antibacterial activity. Adv Powder Technol 28(12):3184–3194

    Article  CAS  Google Scholar 

  • Kaviya S, Prasad E (2016) Eco-friendly synthesis of ZnO nanopencils in aqueous medium: a study of photocatalytic degradation of methylene blue under direct sunlight. RSC Adv 6(40):33821–33827

    Article  CAS  Google Scholar 

  • Kavyashree D, Anandakumari R, Nagabhushana H, Basavaraj R, Raja Naik H, Lingaraju K (2015a) Kalonji seed extract mediated green synthesis of ZnO nanopowders: photocatalytic, antibacterial and antioxidant activities. Mater Sci Forum Trans Tech Publ 830–831:533–536

    Article  Google Scholar 

  • Kavyashree D, Kumari RA, Nagabhushana H, Sharma S, Vidya Y, Anantharaju K et al (2015b) Orange red emitting Eu3+ doped zinc oxide nanophosphor material prepared using Guizotia abyssinica seed extract: structural and photoluminescence studies. J Lumin 167:91–100

    Article  CAS  Google Scholar 

  • Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Khamlich S et al (2017) Sageretia thea (Osbeck.) mediated synthesis of zinc oxide nanoparticles and its biological applications. Nanomedicine 12(15):1767–1789

    Article  CAS  PubMed  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Kim S, Lee S, Lee I (2012) Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut 223(5):2799–2806

    Article  CAS  Google Scholar 

  • Kim DH, Gopal J, Sivanesan I (2017) Nanomaterials in plant tissue culture: the disclosed and undisclosed. RSC Adv 7(58):36492–36505

    Article  CAS  Google Scholar 

  • Kołodziejczak-Radzimska A, Jesionowski T (2014) Zinc oxide—from synthesis to application: a review. Materials 7(4):2833–2881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kong IC, Raliya R, Ko KS, Biswas P (2018) ZnO nanoparticles: effect of size on bacterial bioluminescence, seed germination, algal growth, and gene mutation. Environ Eng Sci 35(3):231–239

    Article  CAS  Google Scholar 

  • Koul A, Kumar A, Singh VK, Tripathi DK, Mallubhotla S (2018) Exploring plant-mediated copper, iron, titanium, and cerium oxide nanoparticles and their impacts. In: Nanomaterials in plants, algae, and microorganisms. Elsevier, USA, pp 175–194

    Google Scholar 

  • Krishna PG, Ananthaswamy PP, Trivedi P, Chaturvedi V, Mutta NB, Sannaiah A et al (2017) Antitubercular activity of ZnO nanoparticles prepared by solution combustion synthesis using lemon juice as bio-fuel. Mater Sci Eng C 75:1026–1033

    Article  CAS  Google Scholar 

  • Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19(16):1855–60

    Google Scholar 

  • Kumar SV, Rajeshkumar S (2018) Plant-based synthesis of nanoparticles and their impact. In: Nanomaterials in plants, algae, and microorganisms. Elsevier, USA, pp 33–57

    Google Scholar 

  • Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190(1–3):613–621

    Article  CAS  PubMed  Google Scholar 

  • Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–An updated report. Saudi Pharm J 24(4):473–484

    Article  PubMed  Google Scholar 

  • Landa P, Vankova R, Andrlova J, Hodek J, Marsik P, Storchova H, White JC, Vanek T (2012) Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mater 241:55–62

    Article  PubMed  CAS  Google Scholar 

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29(3):669–675

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Kim S, Kim S, Lee I (2013) Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum. Environ Sci Pollut Res 20(2):848–854

    Article  CAS  Google Scholar 

  • Li M, Ahammed GJ, Li C, Bao X, Yu J, Huang C, Yin H, Zhou J (2016) Brassinosteroid ameliorates zinc oxide nanoparticles-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling. Front Plant Sci 7:615

    PubMed  PubMed Central  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42(15):5580–5585

    Article  CAS  PubMed  Google Scholar 

  • López-Moreno ML, de la Rosa G, Hernández-Viezcas JÁ, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lv J, Zhang S, Luo L, Zhang J, Yang K, Christie P (2015) Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environ Sci Nano 2(1):68–77

    Article  CAS  Google Scholar 

  • Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol:1–7

    Google Scholar 

  • Mahendiran D, Subash G, Selvan DA, Rehana D, Kumar RS, Rahiman AK (2017) Biosynthesis of zinc oxide nanoparticles using plant extracts of Aloe vera and Hibiscus sabdariffa: phytochemical, antibacterial, antioxidant and anti-proliferative studies. Bio Nano Sci 7(3):530–545

    Google Scholar 

  • Marslin G, Sheeba CJ, Franklin G (2017) Nanoparticles alter secondary metabolism in plants via ROS burst. Front Plant Sci 8:832

    Article  PubMed  PubMed Central  Google Scholar 

  • Maruthupandy M, Zuo Y, Chen J-S, Song J-M, Niu H-L, Mao C-J et al (2017) Synthesis of metal oxide nanoparticles (CuO and ZnO NPs) via biological template and their optical sensor applications. Appl Surf Sci 397:167–174

    Article  CAS  Google Scholar 

  • Mashrai A, Khanam H, Aljawfi RN (2017) Biological synthesis of ZnO nanoparticles using C. albicans and studying their catalytic performance in the synthesis of steroidal pyrazolines. Arab J Chem 10:S1530–6

    Google Scholar 

  • Matinise N, Fuku X, Kaviyarasu K, Mayedwa N, Maaza M (2017) ZnO nanoparticles via Moringa oleifera green synthesis: physical properties & mechanism of formation. Appl Surf Sci 406:339–347

    Article  CAS  Google Scholar 

  • Mirzaei H, Darroudi M (2017) Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram Int 43(1):907–914

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  CAS  PubMed  Google Scholar 

  • Moghaddasi S, Fotovat A, Khoshgoftarmanesh AH, Karimzadeh F, Khazaei HR, Khorassani R (2017) Bioavailability of coated and uncoated ZnO nanoparticles to cucumber in soil with or without organic matter. Ecotoxicol Environ Saf 144:543–51

    Google Scholar 

  • Moghanloo M, Iranbakhsh A, Ebadi M, Satari TN, Ardebili ZO (2019) Seed priming with cold plasma and supplementation of culture medium with silicon nanoparticle modified growth, physiology, and anatomy in Astragalus fridae as an endangered species. Acta Physiol Plant 41(4):54.

    Google Scholar 

  • Mohan AC, Renjanadevi B (2016) Preparation of zinc oxide nanoparticles and its characterization using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Proc Technol 24:761–766

    Article  Google Scholar 

  • Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, Rico CM, Zhao L, Gardea-Torresdey JL (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6(1):132–138

    Article  CAS  PubMed  Google Scholar 

  • Murali M, Mahendra C, Rajashekar N, Sudarshana M, Raveesha K, Amruthesh K (2017) Antibacterial and antioxidant properties of biosynthesized zinc oxide nanoparticles from Ceropegia candelabrum L.–an endemic species. Spectrochim Acta A Mol Biomol Spectrosc 179:104–109

    Article  CAS  PubMed  Google Scholar 

  • Nagajyothi P, An TM, Sreekanth T, Lee J-i, Lee DJ, Lee K (2013) Green route biosynthesis: characterization and catalytic activity of ZnO nanoparticles. Mater Lett 108:160–163

    Article  CAS  Google Scholar 

  • Nagarajan S, Kuppusamy KA (2013) Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India. J Nanobiotechnol 11(1):39

    Article  CAS  Google Scholar 

  • Nagaraju G, Nagabhushana H, Suresh D, Anupama C, Raghu G, Sharma S (2017) Vitis labruska skin extract assisted green synthesis of ZnO super structures for multifunctional applications. Ceram Int 43(15):11656–11667

    Article  CAS  Google Scholar 

  • Nair PMG, Chung IM (2017) Regulation of morphological, molecular and nutrient status in Arabidopsis thaliana seedlings in response to ZnO nanoparticles and Zn ion exposure. Sci Total Environ 575:187–198

    Article  CAS  PubMed  Google Scholar 

  • Nethravathi P, Shruthi G, Suresh D, Nagabhushana H, Sharma S (2015) Garcinia xanthochymus mediated green synthesis of ZnO nanoparticles: photoluminescence, photocatalytic and antioxidant activity studies. Ceram Int 41(7):8680–8687

    Article  CAS  Google Scholar 

  • Ong CB, Ng LY, Mohammad AW (2018) A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew Sust Energ Rev 81:536–551

    Article  CAS  Google Scholar 

  • Pandey AC, Sanjay SS, Yadav RS (2010) Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. J Exp Nanosci 5(6):488–497

    Article  CAS  Google Scholar 

  • Pavithra N, Lingaraju K, Raghu G, Nagaraju G (2017) Citrus maxima (Pomelo) juice mediated eco-friendly synthesis of ZnO nanoparticles: applications to photocatalytic, electrochemical sensor and antibacterial activities. Spectrochim Acta A Mol Biomol Spectrosc 185:11–19

    Article  CAS  PubMed  Google Scholar 

  • Peralta-Videa JR, Hernandez-Viezcas JA, Zhao L, Diaz BC, Ge Y, Priester JH, Holden PA, Gardea-Torresdey JL (2014) Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants. Plant Physiol Biochem 80:128–135

    Article  CAS  PubMed  Google Scholar 

  • Pierre-Jerome E, Drapek C, Benfey PN (2018) Regulation of division and differentiation of plant stem cells. Annu Rev Cell Dev Biol 34:289–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitzschke A, Schikora A, Hirt H (2009) MAPK cascade signalling networks in plant defence. Curr Opin Plant Biol 12(4):421–426

    Article  CAS  PubMed  Google Scholar 

  • Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452:321–332

    Article  PubMed  CAS  Google Scholar 

  • Poynton HC, Lazorchak JM, Impellitteri CA, Smith ME, Rogers K, Patra M, Hammer KA, Allen HJ, Vulpe CD (2010) Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions. Environ Sci Technol 45(2):762–768

    Article  PubMed  CAS  Google Scholar 

  • Prabhu S, Vaideki K, Anitha S, Rajendran R (2016) Synthesis of ZnO nanoparticles using Melia dubia leaf extract and its characterisation. IET Nanobiotechnol 11(1):62–65

    Article  PubMed Central  Google Scholar 

  • Prasad K, Jha AK (2009) ZnO nanoparticles: synthesis and adsorption study. Nat Sci 1(02):129

    CAS  Google Scholar 

  • Prasad TN, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–27

    Google Scholar 

  • Prashanth G, Prashanth P, Bora U, Gadewar M, Nagabhushana B, Ananda S et al (2015) In vitro antibacterial and cytotoxicity studies of ZnO nanopowders prepared by combustion assisted facile green synthesis. Karbala Int J Modern Sci 1(2):67–77

    Article  Google Scholar 

  • Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC, Espinosa K, Gelb J, Walker SL, Nisbet RM, An YJ, Schimel JP (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci 15:201205431

    Google Scholar 

  • Qian Y, Yao J, Russel M, Chen K, Wang X (2015) Characterization of green synthesized nano-formulation (ZnO–A. vera) and their antibacterial activity against pathogens. Environ Toxicol Pharmacol 39(2):736–746

    Article  CAS  PubMed  Google Scholar 

  • Qu J, Yuan X, Wang X, Shao P (2011) Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi L. Environ Pollut 159(7):1783–1788

    Article  CAS  PubMed  Google Scholar 

  • Rafaie H, Samat N, Nor RM (2014) Effect of pH on the growth of zinc oxide nanorods using Citrus aurantifolia extracts. Mater Lett 137:297–299

    Article  CAS  Google Scholar 

  • Raghavendra M, Yatish K, Lalithamba H (2017) Plant-mediated green synthesis of ZnO nanoparticles using Garcinia gummi-gutta seed extract: photoluminescence, screening of their catalytic activity in antioxidant, formylation and biodiesel production. Eur Phys J Plus 132(8):358

    Article  CAS  Google Scholar 

  • Raja K, Sowmya R, Sudhagar R, Moorthy PS, Govindaraju K, Subramanian KS (2019) Biogenic ZnO and Cu nanoparticles to improve seed germination quality in black gram (Vigna mungo). Mater Lett 235:164–167

    Article  CAS  Google Scholar 

  • Rajput VD, Minkina TM, Behal A, Sushkova SN, Mandzhieva S, Singh R, Gorovtsov A, Tsitsuashvili VS, Purvis WO, Ghazaryan KA, Movsesyan HS (2018) Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review. Environ Nanotechnol Monitor Manag 9:76–84

    Article  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2(1):48–57

    Article  CAS  Google Scholar 

  • Raliya R, Nair R, Chavalmane S, Wang WN, Biswas P (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7(12):1584–1594

    Article  CAS  PubMed  Google Scholar 

  • Ramesh P, Rajendran A, Meenakshisundaram M (2014) Green synthesis of zinc oxide nanoparticles using flower extract Caassia auriculata. J Nanosci Nanotechnol 2(1):41–45

    Google Scholar 

  • Ramesh M, Anbuvannan M, Viruthagiri G (2015) Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 136:864–870

    Article  CAS  PubMed  Google Scholar 

  • Rana N, Chand S, Gathania AK (2016) Green synthesis of zinc oxide nano-sized spherical particles using Terminalia chebula fruits extract for their photocatalytic applications. Int Nano Lett 6(2):91–98

    Article  CAS  Google Scholar 

  • Rao S, Shekhawat GS (2014) Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue specific accumulation in Brassica juncea. J Environ Chem Eng 2(1):105–114

    Article  CAS  Google Scholar 

  • Rathnasamy R, Thangasamy P, Thangamuthu R, Sampath S, Alagan V (2017) Green synthesis of ZnO nanoparticles using Carica papaya leaf extracts for photocatalytic and photovoltaic applications. J Mater Sci Mater Electron 28(14):10374–10381

    Article  CAS  Google Scholar 

  • Rehana D, Mahendiran D, Kumar RS, Rahiman AK (2017) In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess Biosyst Eng 40(6):943–957

    Article  CAS  PubMed  Google Scholar 

  • Rejeb IB, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plan Theory 3(4):458–475

    Google Scholar 

  • Safari M, Ardebili ZO, Iranbakhsh A (2018) Selenium nano-particle induced alterations in expression patterns of heat shock factor A4A (HSFA4A), and high molecular weight glutenin subunit 1Bx (Glu-1Bx) and enhanced nitrate reductase activity in wheat (Triticum aestivum L.). Acta Physiol Plant 40(6):117

    Article  CAS  Google Scholar 

  • Salah SM, Yajing G, Dongdong C, Jie L, Aamir N, Qijuan H, Weimin H, Mingyu N, Jin H (2015) Seed priming with polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under nano-ZnO stress. Sci Rep 5:14278

    Google Scholar 

  • Salam HA, Sivaraj R, Venckatesh R (2014) Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth. -Lamiaceae leaf extract. Mater Lett 131:16–18

    Article  CAS  Google Scholar 

  • Samzadeh-Kermani A, Izadpanah F, Mirzaee M (2016) The improvements in the size distribution of zinc oxide nanoparticles by the addition of a plant extract to the synthesis. Cogent Chem 2(1):1150389

    Article  CAS  Google Scholar 

  • Sangeetha G, Rajeshwari S, Venckatesh R (2011) Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties. Mater Res Bull 46(12):2560–2566

    Article  CAS  Google Scholar 

  • Saraswathi VS, Tatsugi J, Shin P-K, Santhakumar K (2017) Facile biosynthesis, characterization, and solar assisted photocatalytic effect of ZnO nanoparticles mediated by leaves of L. speciosa. J Photochem Photobiol B Biol 167:89–98

    Article  CAS  Google Scholar 

  • Sarkar J, Ghosh M, Mukherjee A, Chattopadhyay D, Acharya K (2014) Biosynthesis and safety evaluation of ZnO nanoparticles. Bioprocess Biosyst Eng 37(2):165–171

    Article  CAS  PubMed  Google Scholar 

  • Seddighinia FS, Iranbakhsh A, Ardebili ZO, Satari TN, Soleimanpour S (2019) Seed priming with cold plasma and multi-walled carbon nanotubes modified growth, tissue differentiation, anatomy, and yield in bitter melon (Momordica charantia). J Plant Growth Regul. https://doi.org/10.1007/s00344-019-09965-2

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Shanmugam V, Lo JC, Wu CL, Wang SL, Lai CC, Connolly EL, Huang JL, Yeh KC (2011) Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana–the role in zinc tolerance. New Phytol 190(1):125–137

    Article  CAS  PubMed  Google Scholar 

  • Sharma D, Sabela MI, Kanchi S, Mdluli PS, Singh G, Stenström TA et al (2016) Biosynthesis of ZnO nanoparticles using Jacaranda mimosifolia flowers extract: synergistic antibacterial activity and molecular simulated facet specific adsorption studies. J Photochem Photobiol B Biol 162:199–207

    Article  CAS  Google Scholar 

  • Sharma G, Pandey S, Ghatak S, Watal G, Rai PK (2018) Potential of spectroscopic techniques in the characterization of “green nanomaterials”. In: Nanomaterials in plants, algae, and microorganisms. Elsevier, USA, pp 59–77, USA

    Google Scholar 

  • Shaymurat T, Gu J, Xu C, Yang Z, Zhao Q, Liu Y, Liu Y (2012) Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study. Nanotoxicology 6(3):241–248

    Article  CAS  PubMed  Google Scholar 

  • Shen Z, Chen Z, Hou Z, Li T, Lu X (2015) Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms. Front Environ Sci Eng 9(5):912–918

    Article  CAS  Google Scholar 

  • Sheteiwy MS, Dong Q, An J, Song W, Guan Y, He F, Huang Y, Hu J (2017) Regulation of ZnO nanoparticles-induced physiological and molecular changes by seed priming with humic acid in Oryzasativa seedlings. Plant Growth Regul 83(1):27–41

    Google Scholar 

  • Sheteiwy MS, Fu Y, Hu Q, Nawaz A, Guan Y, Li Z, Huang Y, Hu J (2016) Seed priming with polyethylene glycol induces antioxidative defense and metabolic regulation of rice under nano-ZnO stress. Environ Sci Poll Res 23(19):19989–20002

    Google Scholar 

  • Shukla D, Krishnamurthy S, Sahi SV (2014) Genome wide transcriptome analysis reveals ABA mediated response in Arabidopsis during gold (AuCl− 4) treatment. Front Plant Sci 5:652

    Article  PubMed  PubMed Central  Google Scholar 

  • Shweta, Tripathi DK, Chauhan DK, Peralta-Videa JR (2018) Availability and risk assessment of nanoparticles in living systems: a virtue or a peril? In: Nanomaterials in plants, algae, and microorganisms. Elsevier, USA, pp 1–31

    Google Scholar 

  • Singh BN, Rawat AKS, Khan W, Naqvi AH, Singh BR (2014) Biosynthesis of stable antioxidant ZnO nanoparticles by Pseudomonas aeruginosa rhamnolipids. PLoS One 9(9):e106937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh J, Vishwakarma K, Ramawat N, Rai P, Singh VK, Mishra RK, Kumar V, Tripathi DK, Sharma S (2019) Nanomaterials and microbes’ interactions: a contemporary overview. 3 Biotech 9(3):68

    Article  PubMed  PubMed Central  Google Scholar 

  • Sivaraj R, Rahman PK, Rajiv P, Venckatesh R (2014). Biogenic zinc oxide nanoparticles synthesis using Tabernaemontana Divaricate leaf extract and its anticancer activity against MCF-7 breast cancer cell Lines. Proceedings of the International Conference on Agriculture, Biology and Environmental Science, Rome Italy. pp. 83–85

    Google Scholar 

  • Slama R, El Ghoul J, Ghiloufi I, Omri K, El Mir L, Houas A (2016) Synthesis and physico-chemical studies of vanadium doped zinc oxide nanoparticles and its photocatalysis. J Mater Sci Mater Electron 27(8):8146–8153

    Article  CAS  Google Scholar 

  • Sofo A, Vitti A, Nuzzaci M, Tataranni G, Scopa A, Vangronsveld J, Remans T, Falasca G, Altamura MM, Degola F, Sanità di Toppi L (2013) Correlation between hormonal homeostasis and morphogenic responses in Arabidopsis thaliana seedlings growing in a Cd/Cu/Zn multi-pollution context. Physiol Plant 149(4):487–498

    Article  CAS  PubMed  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43(24):9473–9479

    Article  CAS  PubMed  Google Scholar 

  • Stan M, Popa A, Toloman D, Dehelean A, Lung I, Katona G (2015) Enhanced photocatalytic degradation properties of zinc oxide nanoparticles synthesized by using plant extracts. Mater Sci Semicon Proc 39:23–29

    Article  CAS  Google Scholar 

  • Sundrarajan M, Ambika S, Bharathi K (2015) Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv Powder Technol 26(5):1294–1299

    Article  CAS  Google Scholar 

  • Suresh D, Nethravathi P, Rajanaika H, Nagabhushana H, Sharma S (2015a) Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mat Sci Semicon Proc 31:446–454

    Article  CAS  Google Scholar 

  • Suresh D, Nethravathi PC, Kumar MP, Naika HR, Nagabhushana H, Sharma SC (2015b) Chironji mediated facile green synthesis of ZnO nanoparticles and their photoluminescence, photodegradative, antimicrobial and antioxidant activities. Mater Sci Semicon Proc 40:759–765

    Article  CAS  Google Scholar 

  • Suresh D, Shobharani R, Nethravathi P, Kumar MP, Nagabhushana H, Sharma S (2015c) Artocarpus gomezianus aided green synthesis of ZnO nanoparticles: luminescence, photocatalytic and antioxidant properties. Spectrochim Acta A Mol Biomol Spectrosc 141:128–134

    Article  CAS  PubMed  Google Scholar 

  • Tarafdar JC, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3(3):257–262

    Article  CAS  Google Scholar 

  • Taranath T, Patil BN, Santosh T, Sharath B (2015) Cytotoxicity of zinc nanoparticles fabricated by Justicia adhatoda L. on root tips of Allium cepa L.—a model approach. Environ Sci Pollut Res 22(11):8611–8617

    Article  CAS  Google Scholar 

  • Thema F, Manikandan E, Dhlamini M, Maaza M (2015) Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract. Mater Lett 161:124–127

    Article  CAS  Google Scholar 

  • Thwala M, Musee N, Sikhwivhilu L, Wepener V (2013) The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters. Environ Sci Proc Imp 15(10):1830–43

    Google Scholar 

  • Tiwari N, Pandit R, Gaikwad S, Gade A, Rai M (2016) Biosynthesis of zinc oxide nanoparticles by petals extract of Rosa indica L., its formulation as nail paint and evaluation of antifungal activity against fungi causing onychomycosis. IET Nanobiotechnol 11(2):205–211

    Article  PubMed Central  Google Scholar 

  • Tiwari PK, Singh AK, Singh VP, Prasad SM, Ramawat N, Tripathi DK, Chauhan DK, Rai AK (2019) Liquid assisted pulsed laser ablation synthesized copper oxide nanoparticles (CuO-NPs) and their differential impact on rice seedlings. Ecotoxicol Environ Saf 176:321–329

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Dubey NK, Chauhan DK (2016) Impact of nanoparticles on photosynthesis: challenges and opportunities. Mater Focus 5(5):405–411

    Article  Google Scholar 

  • Tripathi DK, Ahmad P, Sharma S, Chauhan DK, Dubey NK (eds) (2017a) Nanomaterials in plants, algae, and microorganisms: concepts and controversies. Academic Press, Elsevier, USA

    Google Scholar 

  • Tripathi DK, Mishra RK, Singh S, Singh S, Vishwakarma K, Sharma S, Singh VP, Singh PK, Prasad SM, Dubey NK, Pandey AC (2017b) Nitric oxide ameliorates zinc oxide nanoparticles phytotoxicity in wheat seedlings: implication of the ascorbate–glutathione cycle. Front Plant Sci 8:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Prasad SM, Singh PK, Dubey NK, Pandey AC, Chauhan DK (2017c) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177

    Article  CAS  PubMed  Google Scholar 

  • Vankova R, Landa P, Podlipna R, Dobrev PI, Prerostova S, Langhansova L, Gaudinova A, Motkova K, Knirsch V, Vanek T (2017) ZnO nanoparticle effects on hormonal pools in Arabidopsis thaliana. Sci Total Environ 593:535–542

    Article  PubMed  CAS  Google Scholar 

  • Velmurugan P, Park J-H, Lee S-M, Yi Y-J, Cho M, Jang J-S et al (2016) Eco-friendly approach towards green synthesis of zinc oxide nanocrystals and its potential applications. Artif Cells Nanomed Biotechnol 44(6):1537–1543

    Article  CAS  PubMed  Google Scholar 

  • Veluswamy P, Sathiyamoorthy S, Chowdary KH, Muthusamy O, Krishnamoorthy K, Takeuchi T et al (2017) Morphology dependent thermal conductivity of ZnO nanostructures prepared via a green approach. J Alloy Compd 695:888–894

    Article  CAS  Google Scholar 

  • Venkatachalam P, Jayaraj M, Manikandan R, Geetha N, Rene ER, Sharma NC, Sahi SV (2017a) Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiol Biochem 110:59–69

    Article  CAS  PubMed  Google Scholar 

  • Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N, Sahi SV (2017b) Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 110:118–127

    Article  CAS  PubMed  Google Scholar 

  • Vidya C, Prabha MC, Raj MA (2016) Green mediated synthesis of zinc oxide nanoparticles for the photocatalytic degradation of Rose Bengal dye. Environ Nanotechnol Monitor Manag 6:134–138

    Article  Google Scholar 

  • Vimala K, Sundarraj S, Paulpandi M, Vengatesan S, Kannan S (2014) Green synthesized doxorubicin loaded zinc oxide nanoparticles regulates the Bax and Bcl-2 expression in breast and colon carcinoma. Process Biochem 49(1):160–172

    Article  CAS  Google Scholar 

  • Vishwakarma K, Upadhyay N, Singh J, Liu S, Singh VP, Prasad SM, Chauhan DK, Tripathi DK, Sharma S (2017) Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp. Front Plant Sci 8:1501

    Article  PubMed  PubMed Central  Google Scholar 

  • Waalewijn-Kool PL, Ortiz MD, Lofts S, van Gestel CA (2013) The effect of pH on the toxicity of zinc oxide nanoparticles to Folsomia candida in amended field soil. Environ Toxicol Chem 32(10):2349–2355

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Menzies NW, Lombi E, McKenna BA, Johannessen B, Glover CJ, Kappen P, Kopittke PM (2013) Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata). Environmental Sci Technol 47(23):13822–30

    Google Scholar 

  • Wang R, Wang J, Zhao L, Yang S, Song Y (2015) Impact of heavy metal stresses on the growth and auxin homeostasis of Arabidopsis seedlings. Biometals 28(1):123–132

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Lombi E, Zhao FJ, Kopittke PM (2016a) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21(8):699–712

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yang X, Chen S, Li Q, Wang W, Hou C, Gao X, Wang L, Wang S (2016b) Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front Plant Sci 6:1243

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Chen R, Hao Y, Liu H, Song S, Sun G (2017) Transcriptome analysis reveals differentially expressed genes (DEGs) related to lettuce (Lactuca sativa) treated by TiO2/ZnO nanoparticles. Plant Growth Regul 83(1):13–25

    Article  CAS  Google Scholar 

  • Wang XP, Li QQ, Pei ZM, Wang SC (2018) Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biol Plant 62(4):801–808

    Article  CAS  Google Scholar 

  • Watson JL, Fang T, Dimkpa CO, Britt DW, McLean JE, Jacobson A, Anderson AJ (2015) The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28(1):101–112

    Article  CAS  PubMed  Google Scholar 

  • Xiang L, Zhao HM, Li YW, Huang XP, Wu XL, Zhai T, Yuan Y, Cai QY, Mo CH (2015) Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ Sci Pollut Res 22(14):10452–10462

    Article  CAS  Google Scholar 

  • Yadav A, Yadav K (2018) Nanoparticle-based plant disease management: tools for sustainable agriculture. In: Nanobiotechnology applications in plant protection. Springer, Cham, pp 29–61

    Chapter  Google Scholar 

  • Yang KY, Doxey S, McLean JE, Britt D, Watson A, Al Qassy D, Jacobson A, Anderson AJ (2017) Remodeling of root morphology by CuO and ZnO nanoparticles: effects on drought tolerance for plants colonized by a beneficial pseudomonad. Botany 96(3):175–186

    Article  CAS  Google Scholar 

  • Yoon SJ, Kwak JI, Lee WM, Holden PA, An YJ (2014) Zinc oxide nanoparticles delay soybean development: a standard soil microcosm study. Ecotoxicol Environ Saf 100:131–7

    Google Scholar 

  • Yuvakkumar R, Suresh J, Nathanael AJ, Sundrarajan M, Hong S (2014) Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Mat Sci Eng C 41:17–27

    Article  CAS  Google Scholar 

  • Yuvakkumar R, Suresh J, Saravanakumar B, Nathanael AJ, Hong SI, Rajendran V (2015) Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications. Spectrochim Acta A Mol Biomol Spectrosc 137:250–258

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Hua T, Xiao F, Chen C, Gersberg RM, Liu Y, Stuckey D, Ng WJ, Tan SK (2015) Phytotoxicity and bioaccumulation of ZnO nanoparticles in Schoenoplectus tabernaemontani. Chemosphere 120:211–219

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Peralta-Videa JR, Ren M, Varela-Ramirez A, Li C, Hernandez-Viezcas JA, Aguilera RJ, Gardea-Torresdey JL (2012) Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chem Eng J 184:1–8

    Article  CAS  Google Scholar 

  • Zhao L, Hernandez-Viezcas JA, Peralta-Videa JR, Bandyopadhyay S, Peng B, Munoz B, Keller AA, Gardea-Torresdey JL (2013) ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate. Environ Sci Process Impacts 15(1):260–266

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62(13):2752–2759

    Article  CAS  PubMed  Google Scholar 

  • Zafar H, Ali A, Ali JS, Haq IU, Zia M (2016) Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response. Front Plant Sci 7:535

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Iranbakhsh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iranbakhsh, A., Oraghi Ardebili, Z., Oraghi Ardebili, N. (2021). Synthesis and Characterization of Zinc Oxide Nanoparticles and Their Impact on Plants. In: Singh, V.P., Singh, S., Tripathi, D.K., Prasad, S.M., Chauhan, D.K. (eds) Plant Responses to Nanomaterials. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-36740-4_3

Download citation

Publish with us

Policies and ethics