Skip to main content
Log in

The study of femtosecond LIBS in Vortex–Gaussian and double Gaussian configurations

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Laser-induced breakdown spectroscopy (LIBS) is a fast and efficient method for sample analysis, whose applications are restricted by the detection limit. Here, femtosecond Vortex laser pulse is introduced to improve the detection limit of LIBS. The emission spectra of Al (I) and Si (I) are measured within Vortex–Gaussian configuration as functions of the inter-pulse delay time between these two pulses. For comparison, the corresponding measurements are also performed within double Gaussian scheme. The variations of the LIBS signals on the inter-pulse delay time of Si and Al exhibit different tendencies. This is because the evolution of plasma and the energy absorption are different when the laser pulse is introduced to interact with them, owing to the different properties of metal and semiconductor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. P.A. Babushkin, G.G. Matvienko, V.K. Oshlakov, Determination of the elemental composition of aerosol by femtosecond laser-induced breakdown spectroscopy. Atmos. Ocean Opt. 35, 19–26 (2022)

    Article  Google Scholar 

  2. M.Z. Martin, S.D. Wullschleger, C.T. Garten Jr., V. Anthony, Laser- induced breakdown spectroscopy for the environmental determination of total carbon and nitrogen in soils. Appl. Opt. 42, 2072–2077 (2013)

    Article  ADS  Google Scholar 

  3. M.A. Gondal, T. Hussain, Z.H. Yamani, M.A. Baig, On-line monitoring of remediation process of chromium polluted soil using LIBS. J. Hazard. Mater. 163, 1265–1271 (2009)

    Article  Google Scholar 

  4. T. Hussain, M.A. Gondal, Monitoring and assessment of toxic metals in gulf war oil spill contaminated soil using laser-induced breakdown spectroscopy. Environ. Monit. Assess. 136, 391–399 (2008)

    Article  Google Scholar 

  5. T. Kim, Z.G. Specht, P.S. Vary, C.T. Lin, Spectral fingerprints of bacterial strains by laser-induced breakdown spectroscopy. J. Phys. Chem. B 108, 5477–5482 (2004)

    Article  Google Scholar 

  6. N. Omenetto, Role of lasers in analytical atomicspectroscopy: where, when and why. J. Anal. At. Spectrom. 13, 385–399 (1998)

    Article  Google Scholar 

  7. A.W. Miziolek, V. Palleschi, I. Schechter, Laser induced breakdown spectroscopy (LIBS): fundamentals and applications (Cambridge University Press, Cambridge, 2006), pp.257–290

    Book  Google Scholar 

  8. D.W. Hahn, N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields. Appl. Spectrosc. 66, 347–419 (2012)

    Article  ADS  Google Scholar 

  9. X. Liu, S. Sun, X. Wang, Z. Liu, Q. Liu, P. Ding, Z. Guo, B. Hu, Effect of laser pulse energy on orthogonal double femtosecond pulse laser-induced breakdown spectroscopy. Opt. Express 21(S4), A704–A713 (2013)

    Article  ADS  Google Scholar 

  10. V.I. Babushok, F.C. DeLucia, J.L. Gottfried, C.A. Munson, A.W. Miziolek, Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement. Spectrochim. Acta B 61, 999–1014 (2006)

    Article  ADS  Google Scholar 

  11. A. De Giacomo, M. Dell’Aglio, D. Bruno, R. Gaudiuso, O. De Pascale, Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples. Spectrochim. Acta B 63, 805–816 (2008)

    Article  ADS  Google Scholar 

  12. Qiuyun Wang, Weijie Dang, Yuanfei Jiang, Anmin Chen, Mingxing Jin, Emission enhancement of femtosecond laser-induced breakdown spectroscopy using vortex beam. J. Phys. B At. Mol. Opt. Phys. 55, 095402 (2022)

    Article  ADS  Google Scholar 

  13. T. Ohta, M. Ito, T. Kotani, T. Hattori, Emission enhancement of laser-induced breakdown spectroscopy by localized surface plasmon resonance for analyzing plant nutrients. Appl. Spectrosc. 63, 555–558 (2009)

    Article  ADS  Google Scholar 

  14. M. Abdelhamid, Y.A. Attia, M. Abdel-Harith, The sign encance of nano-shapes in nanoparticle enhanced laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 35, 2982–2989 (2020)

    Article  Google Scholar 

  15. Z. Salajkov’a, V. Gardette, J. Kaiser, M. Dell’Aglio, A. De Giacomo, Effect of spherical gold nanoparticles size on nanoparticle enhanced laser induced breakdown spectroscopy. Spectrochim. Acta B 179, 106105 (2021)

    Article  Google Scholar 

  16. C. Goueguel, S. Laville, F. Vidal, M. Sabsabi, M. Chaker, Investigation of resonance-enhanced laser-induced breakdown spectroscopy for analysis of aluminium alloys. J. Anal. At. Spectrom. 25(5), 635–644 (2010)

    Article  Google Scholar 

  17. Zhe Wang, Ting-Bi. Yuan, Zong-Yu. Hou, Wei-Dong. Zhou, Lu. Ji-Dong, Hong-Bin. Ding, Xiao-Yan. Zeng, Laser-induced breakdown spectroscopy in China. Front. Phys. 9, 419–438 (2014)

    Article  ADS  Google Scholar 

  18. A. De Giacomo, M. Dell’Aglio, R. Gaudiuso, C. Koral, G. Valenza, Perspective on the use of nanoparticles to improve LIBS analytical performance: nanoparticle enhanced laser induced breakdown spectroscopy (NELIBS). J. Anal. At. Spectrom. 31, 1566–1573 (2016)

    Article  Google Scholar 

  19. A. De Giacomo, R. Gaudiuso, C. Koral, M. Dell’Aglio, O. De Pascale, Nanoparticle enhanced laser-induced breakdown spectroscopy of metallic samples. Anal. Chem. 85, 10180–10187 (2013)

    Article  Google Scholar 

  20. Fan Yang, Lan Jiang, Sumei Wang, Zhitao Cao, Lei Liu, Mengmeng Wang, Lu. Yongfeng, Emission enhancement of femtosecond laser-induced breakdown spectroscopy by combining nanoparticle and dual-pulse on crystal Si\(\rm O_2\). Opt. Laser Technol. 93, 194–200 (2017)

    Article  ADS  Google Scholar 

  21. Jian Wang, Jeng-Yuan. Yang, Irfan M. Fazal, Nisar Ahmed, Yan Yan, Hao Huang, Yongxiong Ren, Yang Yue, Samuel Dolinar, Moshe Tur, Alan E. Willner, Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 6, 488–496 (2012)

    Article  ADS  Google Scholar 

  22. M.P.J. Lavery, F.C. Speirits, S.M. Barnett, M.J. Padgett, Detection of a spinning object using light’s orbital angular momentum. Science 341, 537–540 (2013)

    Article  ADS  Google Scholar 

  23. M. Padgett, R. Bowman, Tweezers with a twist. Nat. Photon 5, 343–348 (2011)

    Article  ADS  Google Scholar 

  24. X. Qiu et al., Spiral phase contrast imaging in nonlinear optics: seeing phase objects using invisible illumination. Optica 5, 208–212 (2018)

    Article  ADS  Google Scholar 

  25. M. Granata, C. Buy, R. Ward, M. Barsuglia, Higher-order Laguerre-Gauss mode generation and interferometry for gravitational wave detectors. Phys. Rev. Lett. 231102, 1–4 (2010)

    Google Scholar 

  26. S. Michael Angel, D.N. Stratis, K.L. Eland, T. Lai, M.A. Berg, D.M. Gold, LIBS using dual- and ultra-short laser pulses. Fresen. J. Anal. Chem. 369, 320–327 (2001)

    Article  Google Scholar 

  27. A. Semerok, C. Dutouquet, Ultrashort double pulse laser ablation of metals. Thin Solid Films 453–454, 501–505 (2004)

    Article  Google Scholar 

  28. J. Uebbing, J. Brust, W. Sdorra, F. Leis, K. Niemax, Reheating of a laser-produced plasma by a second pulse laser. Appl. Spectrosc. 45(9), 1419–1423 (1991)

    Article  ADS  Google Scholar 

  29. A. Semerok, C. Dutouquet, Ultrashort double pulse laser ablation of metals. Thin Soild Films 453, 501–505 (2004)

    Article  ADS  Google Scholar 

  30. W. Wessel, A. Brueckner-Foit, J. Mildner, L. Englert, L. Haag, A. Horn, M. Wollenhaupt, T. Baumertl, Use of femtosecond laser-induced breakdown spectroscopy (fs-LIBS) for micro-crack analysis on the surface. Eng. Fract. Mech. 77, 1874–1883 (2010)

    Article  Google Scholar 

  31. E. Betzig, J.K. Trautman, Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257(5067), 189–195 (1992)

    Article  ADS  Google Scholar 

  32. Xiaoliang Liu, Shaohua Sun, Xiaoshao Wang, Zouye Liu, Qingcao Liu, Pengji Ding, Zeqin Gou, Hu. Bitao, Effect of laser pulse energy on orthogonal double femtosecond pulse laser-induced breakdown spectroscopy. Optics Express 54, A704–A713 (2013)

    Article  Google Scholar 

  33. M. Milán, J.J. Laserna, Diagnostics of silicon plasmas produced by visible nanosecond laser ablation. Spectrochim. Acta B 56, 275–288 (2001)

    Article  ADS  Google Scholar 

  34. Lu. Yuan, Vassilia Zorba, Xianglei Mao, Ronger Zheng, Richard E. Russo, UV fs-ns double-pulse laser induced breakdown spectroscopy for high spatial resolution chemical analysis. J. Anal. At. Spectrom. 28, 743–748 (2013)

    Article  Google Scholar 

  35. Ruizhao Yang, Lvqing Bi, Spectral enhancement mechanism and analysis of defocused collinear DP-LIBS technology. Optik-Int. J. Light Electron Opt. 243, 167025 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

Project supported by the National Natural Science Foundation of China (Grant Nos. 12027809), the Fundamental Research Funds for the Central Universities (Grant Nos. lzujbky-2022-ey05) and the State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China (Grant No.NPT2020KFY17).

Author information

Authors and Affiliations

Authors

Contributions

JG wrote the main manuscript text and prepared Figs. 1, 2, 3 and 4 and Table 1. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Shaohua Sun or Zuoye Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Yang, J., Wang, Z. et al. The study of femtosecond LIBS in Vortex–Gaussian and double Gaussian configurations. Appl. Phys. B 129, 119 (2023). https://doi.org/10.1007/s00340-023-08064-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08064-1

Navigation