Skip to main content
Log in

Effect of parameters on Si plasma emission in collinear double-pulse laser-induced breakdown spectroscopy

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Collinear dual-pulse laser-induced breakdown spectroscopy was carried out on Si crystal by using a pair of nanosecond Nd:YAG laser sources emitting at 1064 nm. The spectral intensities and signalto- noise ratios of selected Si atomic and ionic lines were used to evaluate the optical emission. The optical emission intensity was recorded while varying the interpulse delay time and energy ratio of the two pulsed lasers. The effects of the data acquisition delay time on the line intensity and signal-to-noise ratio have been investigated as well. Based on the results, the optimal interpulse delay time, energy ratio of the two pulsed lasers, and data acquisition delay time for achieving the maximum atomic and ionic line intensities were found for generation of Si plasma with the collinear dual-pulse laser approach. The dominant mechanism for the observed line intensity variation was also discussed. In addition, the plasma temperature and electron number density at different gate delay times and different interpulse delay times were derived. A significant influence of plasma shielding on the electron temperature and electron number density at shorter interpulse delay times was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Singh and S. N. Thakkur, Laser-Induced Breakdown Spectroscopy, Elsevier Science, Oxford, 2007

    Google Scholar 

  2. Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)

    Article  Google Scholar 

  3. J. S. Xiu, X. S. Bai, V. Motto-Ros, and J. Yu, Characteristics of indirect laser-induced plasma from a thin film of oil on a metallic substrate, Front. Phys. 10(2), 104204 (2015)

    Article  Google Scholar 

  4. X. Li, W. Zhou, K. Li, H. Qian, and Z. Ren, Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil, Opt. Commun. 285(1), 54 (2012)

    ADS  Google Scholar 

  5. W. Zhou, K. Li, H. Qian, Z. Ren, and Y. Yu, Effect of voltage and capacitance in nanosecond pulse discharge enhanced laser-induced breakdown spectroscopy, Appl. Opt. 51(7), B42 (2012)

    Article  Google Scholar 

  6. Z. Hou, Z. Wang, J. Liu, W. Ni, and Z. Li, Combination of cylindrical confinement and spark discharge for signal improvement using laser induced breakdown spectroscopy, Opt. Express 22(11), 12909 (2014)

    Article  ADS  Google Scholar 

  7. A. M. Popov, F. Colao, and R. Fantoni, Enhancement of LIBS signal by spatially confining the laser-induced plasma, J. Anal. At. Spectrom. 24(5), 602 (2009)

    Article  Google Scholar 

  8. Z. Wang, Z. Hou, S. Lui, D. Jiang, J. Liu, and Z. Li, Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal, Opt. Express 20(23), A1011 (2012)

    Article  ADS  Google Scholar 

  9. X. Su, W. Zhou, and H. Qian, Optimization of cavity size for spatial confined laser-induced breakdown spectroscopy, Opt. Express 22(23), 28437 (2014)

    Article  ADS  Google Scholar 

  10. C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, Main parameters influencing the doublepulse laser-induced breakdown spectroscopy in the collinear beam geometry, Spectrochim. Acta B 60(6), 792 (2005)

    Article  ADS  Google Scholar 

  11. D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, Enhancement of Nd: YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse, Opt. Express 15(20), 12905 (2007)

    Article  ADS  Google Scholar 

  12. Y. Yu, W. Zhou, and X. Su, Detection of Cu in solution with double pulse laser-induced breakdown spectroscopy, Opt. Commun. 333, 62 (2014)

    Article  ADS  Google Scholar 

  13. R. Sattmann, V. Sturm, and R. Noll, Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses, J. Phys. D 28(10), 2181 (1995)

    Article  ADS  Google Scholar 

  14. X. Su, W. Zhou, and H. Qian, Optical emission character of collinear dual pulse laser plasma with cylindrical cavity confinement, J. Anal. At. Spectrom. 29(12), 2356 (2014)

    Article  Google Scholar 

  15. A. Bogaerts, Z. Chen, and D. Autrique, Double pulse laser ablation and laser induced breakdown spectroscopy: A modeling investigation, Spectrochim. Acta B 63(7), 746 (2008)

    Article  ADS  Google Scholar 

  16. A. De Giacomo, M. Dell’Aglio, D. Bruno, R. Gaudiuso, and O. De Pascale, Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples, Spectrochim. Acta B 63(7), 805 (2008)

    Article  ADS  Google Scholar 

  17. F. Colao, V. Lazic, R. Fantoni, and S. Pershin, A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples, Spectrochim. Acta B 57(7), 1167 (2002)

    Article  ADS  Google Scholar 

  18. V. N. Rai, A. K. Rai, F. Y. Yueh, and J. P. Singh, Optical emission from laser-induced breakdown plasma of solid and liquid samples in the presence of a magnetic field, Appl. Opt. 42(12), 2085 (2003)

    Article  ADS  Google Scholar 

  19. P. A. Benedetti, G. Cristoforetti S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, Effect of laser pulse energies in laser induced breakdown spectroscopy in doublepulse configuration, Spectrochim. Acta B 60(11), 1392 (2005)

    Article  ADS  Google Scholar 

  20. B. Rashid, R. Ahmed, R. Ali, and M. A. Baig, A comparative study of single and double pulse of laser induced breakdown spectroscopy of silver, Phys. Plasmas 18(7), 073301 (2011)

    Article  ADS  Google Scholar 

  21. H. Griem, Principles of Plasma Spectroscopy, Cambridge: Cambridge University Press, 1997

    Book  Google Scholar 

  22. X. Li, Z. Wang, X. Mao, and R. E. Russo, Spatially and temporally resolved spectral emission of laser-induced plasmas confined by cylindrical cavities, J. Anal. At. Spectrom. 29(11), 2127 (2014)

    Article  Google Scholar 

  23. NIST, Atomic Spectra Database, http://physics.nist.gov

  24. V. I. Babushok, F. C. Jr DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement, Spectrochim. Acta B 61(9), 999 (2006)

    Article  ADS  Google Scholar 

  25. W. Zhou, X. Su, H. Qian, K. Li, X. Li, Y. Yu, and Z. Ren, Discharge character and optical emission in a laser ablation nanosecond discharge enhanced silicon plasma, J. Anal. At. Spectrom. 28(5), 702 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Dong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, FF., Su, XJ. & Zhou, WD. Effect of parameters on Si plasma emission in collinear double-pulse laser-induced breakdown spectroscopy. Front. Phys. 10, 104207 (2015). https://doi.org/10.1007/s11467-015-0500-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-015-0500-2

Keywords

Navigation