Skip to main content
Log in

Improving the probabilistic quantum teleportation efficiency of arbitrary superposed coherent state using multipartite even and odd j-spin coherent states as resource

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Quantum teleportation is one of the most important techniques for quantum information secure transmission. Using preshared entanglement, quantum teleportation is designed as a basic key in many quantum information tasks and features prominently in quantum technologies, especially in quantum communication. In this work, we provide a new probabilistic teleportation scheme for arbitrary superposed coherent states by employing the multipartite even and odd j-spin coherent states as the entangled resource connecting Alice (sender) and Bob (receiver). Here, Alice possesses both even and odd spin coherent states and makes repeated GHZ states measurements (GHZSMs) on the pair of spins, consisting of (1) the unknown spin state and (2) one of the two coherent spin states, taken alternately, until reaching a quantum teleportation with maximal average fidelity. We provide the relationship between the entanglement amount of the shared state, quantified by the concurrence, with the teleportation fidelity and the success probability of the teleported target state up to the \(n\textrm{th}\) repeated attempt. In this scheme, we show that the perfect quantum teleportation can be done even with a non-maximally entangled state. Furthermore, this repeated GHZSMs attempt process significantly increases both the average fidelity of the teleported state and the probability of a successful run of the probabilistic protocol. Also on our results, we show that the j-spin number, the target state parameter and the overlap between coherent states provide important additional control parameters that can be adjusted to maximize the teleportation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  3. J. Grondalski, D.M. Etlinger, D.F.V. James, The fully entangled fraction as an inclusive measure of entanglement applications. Phys. Lett. A 300, 573–580 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. M. Li, S. M .Fei and X. Li-Jost, Quantum entanglement: separability, measure, fidelity of teleportation, and distillation. Adv. Math. Phys. (2010)

  5. S.L. Braunstein, G.M. D’Ariano, G.J. Milburn, M.F. Sacchi, Universal teleportation with a twist. Phys. Rev. Lett. 84, 3486 (2000)

    Article  ADS  Google Scholar 

  6. M. Hillery, V. Buzek, A. Berthiaume, Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. A. Furusawa, J.L. Sørensen, S.L. Braunstein, C.A. Fuchs, H.J. Kimble, E.S. Polzik, Unconditional quantum teleportation. Science 282, 706–709 (1998)

    Article  ADS  Google Scholar 

  8. D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  10. F.G. Deng, C.Y. Li, Y.S. Li, H.Y. Zhou, Y. Wang, Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)

    Article  ADS  Google Scholar 

  11. K. Banaszek, Optimal quantum teleportation with an arbitrary pure state. Phys. Rev. A 62, 024301 (2000)

    Article  ADS  Google Scholar 

  12. D. Gottesman, I.L. Chuang, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999)

    Article  ADS  Google Scholar 

  13. K.F. Yu, C.W. Yang, C.H. Liao, T. Hwang, Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process. 13, 1457–1465 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Y.H. Kim, S.P. Kulik, Y. Shih, Quantum teleportation of a polarization state with a complete Bell state measurement. Phys. Rev. Lett. 86, 1370 (2001)

    Article  ADS  Google Scholar 

  15. S. Takeda, T. Mizuta, M. Fuwa, P. van Loock, A. Furusawa, Deterministic quantum teleportation of photonic quantum bits by a hybrid technique. Nature 500, 315–318 (2013)

    Article  ADS  Google Scholar 

  16. K. Thapliyal, A. Verma, A. Pathak, A general method for selecting quantum channel for bidirectional controlled state teleportation and other schemes of controlled quantum communication. Quantum Inf. Process. 14, 4601–4614 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. J.G. Ren, P. Xu, H.L. Yong, L. Zhang, S.K. Liao, J. Yin et al., Ground-to-satellite quantum teleportation. Nature 549, 70–73 (2017)

    Article  ADS  Google Scholar 

  18. X.L. Wang, X.D. Cai, Z.E. Su, M.C. Chen, D. Wu, L. Li et al., Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015)

    Article  ADS  Google Scholar 

  19. X.M. Hu, C. Zhang, B.H. Liu, Y. Cai, X.J. Ye, Y. Guo et al., Experimental multi-level quantum teleportation. Phys. Rev. Lett. 125, 230501 (2020)

    Article  ADS  Google Scholar 

  20. L. Zhou, Y.B. Sheng, Complete logic Bell-state analysis assisted with photonic Faraday rotation. Phys. Rev. A 92, 042314 (2015)

    Article  ADS  Google Scholar 

  21. Y.B. Sheng, L. Zhou, Two-step complete polarization logic Bell-state analysis. Sci. Rep. 5, 13453 (2015)

    Article  ADS  Google Scholar 

  22. Y.B. Sheng, L. Zhou, G.L. Long, Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)

    Article  ADS  Google Scholar 

  23. S. Salimian, M.K. Tavassoly, N. Sehati, Teleportation of the entangled state of two superconducting qubits. Europhys. Lett. 138, 55004 (2022)

    Article  ADS  Google Scholar 

  24. l.M. Sisodia, A theoretical study of controlled quantum teleportation scheme for n-qubit quantum state. Int. J. Theor. Phys. 61, 270 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  25. F. Jahanbakhsh, M.K. Tavassoly, Teleportation of unknown states of a qubit and a single-mode field in strong coupling regime without Bell-state measurement. Commun. Theor. Phys. 75, 025103 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  26. M. Sisodia, Improvement on quantum bidirectional teleportation scheme of two-two or two-three qubit quantum states. Int. J. Theor. Phys. 61, 270 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Nourmandipour, M.K. Tavassoly, Dynamics and protecting of entanglement in two-level systems interacting with a dissipative cavity: the Gardiner-Collett approach. J. Phys. B: At. Mol. Opt. Phys. 48, 165502 (2015)

    Article  ADS  Google Scholar 

  28. R.G. Zhou, Y.N. Zhang, Bidirectional quantum controlled teleportation of three-qubit state by using GHZ states. Int. J. Theor. Phys. 58, 3594–3601 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. S.J. Van Enk, O. Hirota, Entangled coherent states: teleportation and decoherence. Phys. Rev. A 64, 022313 (2001)

    Article  ADS  Google Scholar 

  30. M. El Kirdi, A. Slaoui, N. Ikken, M. Daoud, R.A. Laamara, Controlled quantum teleportation between discrete and continuous physical systems. Phys. Scr. 98, 025101 (2023)

    Article  ADS  Google Scholar 

  31. H. Prakash and V. Verma, Quantum teleportation of single qubit mixed information state with werner-like state as resource. arXiv preprint. arXiv:1305.4259 (2013)

  32. P. Badziag, M. Horodecki, P. Horodecki, R. Horodecki, Local environment can enhance fidelity of quantum teleportation. Phys. Rev. A 62, 012311 (2000)

    Article  ADS  Google Scholar 

  33. H. Prakash, R. Prakash, H. Prakash, Int. J. Quantum Inf. 19, 2150015 (2021)

    Article  Google Scholar 

  34. P. Agrawal, A.K. Pati, Probabilistic quantum teleportation. Phys. Lett. A 305, 12–17 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. W.-L. Li, C.F. Li, G.C. Guo, Probabilistic teleportation and entanglement matching. Phys. Rev. A 61, 034301 (2000)

    Article  ADS  Google Scholar 

  36. N. Linden, S. Massar, S. Popescu, Purifying noisy entanglement requires collective measurements. Phys. Rev. Lett. 81, 3279 (1998)

    Article  ADS  Google Scholar 

  37. R.F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  MATH  Google Scholar 

  38. C.H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J.A. Smolin, W.K. Wootters, Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  39. R. Fortes, G. Rigolin, Probabilistic quantum teleportation in the presence of noise. Phys. Rev. A 93, 062330 (2016)

    Article  ADS  Google Scholar 

  40. R. Fortes, G. Rigolin, Probabilistic quantum teleportation via thermal entanglement. Phys. Rev. A 96, 022315 (2017)

    Article  ADS  Google Scholar 

  41. A.M. Perelomov, Coherent states for arbitrary Lie group. Commun. Math. Phys. 26, 222 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. A.M. Perelomov, Generalized Coherent States and their Applications (Springer, New York, 1986)

    Book  MATH  Google Scholar 

  43. M. Daoud, R. Ahl Laamara, W. Kaydi, Multipartite quantum correlations in even and odd spin coherent states. J. Phys. A: Math. Theor. 46, 395302 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. S.T. Ali, J.-P. Andrzei, J.-P. Gazeau, Coherent States, Wavelets and their Generalization (Springer-Verlag, New York, 2000)

    Book  Google Scholar 

  45. M. Zukowski, A. Zeilinger, M.A. Horne, H. Weinfurter, Quest for GHZ states. Acta Phys. Pol., A 93, 187 (1998)

    Article  ADS  Google Scholar 

  46. D.M. Greenberger, M.A. Horne, A. Shimony, A. Zeilinger, Bell’s theorem without inequalities. Am. J. Phys. 58, 1131 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. C. Monroe, D.M. Meekhof, B.E. King, D.J. Wineland, A “Schrödinger cat’’ superposition state of an atom. Science 272, 1131–1136 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. W.M. Zhang, R. Gilmore, Coherent states: theory and some applications. Rev. Mod. Phys. 62, 867 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  49. R.J. Glauber, Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. J.R. Klauder, B.S. Skagerstam, Coherent States: Applications in Physics and Mathematical Physics (World Scientific, Singapore, 1985)

    Book  MATH  Google Scholar 

  51. W. Dür, G. Vidal, J.I. Cirac, Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  52. H.W. Zurek, Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. A. Slaoui, M. Daoud, R. Ahl Laamara, The dynamic behaviors of local quantum uncertainty for three-qubit X states under decoherence channels. Quantum Inf. Process. 18, 250 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. M.I. Shaukat, A. Slaoui, H. Terças, M. Daoud, Phonon-mediated quantum discord in dark solitons. Eur. Phys. J. Plus 135, 357 (2020)

    Article  Google Scholar 

  55. S. Binicioglu, M.A. Can, A.A. Klyachko, A.S. Shumovsky, Entanglement of a single spin-1 object: an example of ubiquitous entanglement. Found. Phys. 37, 1253–1277 (2007)

    Article  ADS  MATH  Google Scholar 

  56. M.A. Can, A. Klyachko, A. Shumovsky, Single-particle entanglement. J. Opt. B: Quantum Semiclass. Opt 7, L1 (2005)

    Article  MathSciNet  Google Scholar 

  57. M.O. Terra Cunha, J.A. Dunningham, V. Vedral, Proc. R. Soc. A: Math. Phys. Eng. Sci. 463, 2277 (2007)

    Article  ADS  Google Scholar 

  58. W.K. Wootters, Entanglement of formation and concurrence. Quantum Inf. Comput. 1, 27–44 (2001)

    MathSciNet  MATH  Google Scholar 

  59. S. Popescu, Bell’s inequalities versus teleportation: What is nonlocality? Phys. Rev. Lett. 72, 797 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. I. Supic, P. Skrzypczyk and D. Cavalcanti, Estimating entanglement in teleportation experiments, preprint arXiv:1804.10612v2 (2018)

  61. S. Oh, S. Lee, H.W. Lee, Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66, 022316 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  62. S. Wu, Y. Zhang, Multipartite pure-state entanglement and the generalized Greenberger-Horne-Zeilinger states. Phys. Rev. A 63, 012308 (2000)

    Article  ADS  Google Scholar 

  63. H. Ollivier, W.H. Zurek, Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  64. A. Slaoui, M. Daoud, R.A. Laamara, The dynamics of local quantum uncertainty and trace distance discord for two-qubit X states under decoherence: a comparative study. Quantum Inf. Process. 17, 178 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. A. Streltsov, G. Adesso, M.B. Plenio, Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  66. T. Werlang, S. Souza, F.F. Fanchini, C.V. Boas, Robustness of quantum discord to sudden death. Phys. Rev. A 80, 024103 (2009)

    Article  ADS  Google Scholar 

  67. A. Slaoui, A. Salah, M. Daoud, Influence of Stark-shift on quantum coherence and non-classical correlations for two two-level atoms interacting with a single-mode cavity field. Phys. A 558, 124946 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  68. C. Napoli, T.R. Bromley, M. Cianciaruso, M. Piani, N. Johnston, G. Adesso, Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MK & AS: writing—original draft, software and investigation; AS: conceptualization, methodology, validation, visualization, writing—review and editing; HH & MD: review.

Corresponding author

Correspondence to Abdallah Slaoui.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirdi, M.E., Slaoui, A., Hadfi, H.E. et al. Improving the probabilistic quantum teleportation efficiency of arbitrary superposed coherent state using multipartite even and odd j-spin coherent states as resource. Appl. Phys. B 129, 94 (2023). https://doi.org/10.1007/s00340-023-08039-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08039-2

Navigation