Skip to main content
Log in

The dynamics of local quantum uncertainty and trace distance discord for two-qubit X states under decoherence: a comparative study

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We employ the concepts of local quantum uncertainty and geometric quantum discord based on the trace norm to investigate the environmental effects on quantum correlations of two bipartite quantum systems. The first one concerns a two-qubit system coupled with two independent bosonic reservoirs. We show that the trace discord exhibits frozen phenomenon contrarily to local quantum uncertainty. The second scenario deals with a two-level system, initially prepared in a separable state, interacting with a quantized electromagnetic radiation. Our results show that there exists an exchange of quantum correlations between the two-level system and its surrounding which is responsible for the revival phenomenon of non-classical correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Braunstein, S.L., Kimble, H.J.: Phys. Rev. Lett. 80, 869 (1998)

    Article  ADS  Google Scholar 

  3. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  4. Bennett, C.H., Brassard, G.: In: The Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India (IEEE, New York), p. 175 (1984)

  5. Vedral, V.: Rev. Mod. Phys. 74, 197 (2002)

    Article  ADS  Google Scholar 

  6. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  Google Scholar 

  7. Gühne, O., Tóth, G.: Phys. Rep. 474, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  8. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  9. Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  10. Ollivier, H., Zurek, W.H.: Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  11. Henderson, L., Vedral, V.: J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  12. Huang, Y.: New J. Phys. 16, 033027 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  13. Dakić, B., Vedral, V., Brukner, Č.: Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  14. Bellomo, B., Lo Franco, R., Compagno, G.: Phys. Rev. A 86, 012312 (2012)

    Article  ADS  Google Scholar 

  15. Bellomo, B., Giorgi, G.L., Galve, F., Lo Franco, R., Compagno, G., Zambrini, R.: Phys. Rev. A 85, 032104 (2012)

    Article  ADS  Google Scholar 

  16. Daoud, M., Ahl Laamara, R.: Phys. Lett. A 376, 2361 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  17. Daoud, M., Ahl Laamara, R.: Int. J. Quantum Inf. 10, 1250060 (2012)

    Article  MathSciNet  Google Scholar 

  18. Piani, M.: Phys. Rev. A 86, 034101 (2012)

    Article  ADS  Google Scholar 

  19. Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Phys. Rev. A 87, 064101 (2013)

    Article  ADS  Google Scholar 

  20. Paula, F.M., Montealegre, J.D., Saguia, A., de Oliveira, T.R., Sarandy, M.S.: EPL 103, 50008 (2013)

    Article  ADS  Google Scholar 

  21. Bromley, T.R., Cianciaruso, M., Lo Franco, R., Adesso, G.: J. Phys. A Math. Theor. 47, 405302 (2014)

    Article  Google Scholar 

  22. Ciccarello, F., Tufarelli, T., Giovannetti, V.: New J. Phys. 16, 013038 (2014)

    Article  ADS  Google Scholar 

  23. Girolami, D., Tufarelli, T., Adesso, G.: Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  24. Wigner, E.P., Yanasse, M.M.: Proc. Nat. Acad. Sci. U.S.A. 49, 910 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  25. Luo, S.: Phys. Rev. Lett. 91, 180403 (2003)

    Article  ADS  Google Scholar 

  26. Petz, D., Ghinea, C.: In: Rebolledo, R., Orszag, M. (eds.) Quantum Probability and Related Topics. World Scientific, Singapore (2011)

    Google Scholar 

  27. Luo, S.: Proc. Am. Math. Soc. 132, 885 (2003)

    Article  Google Scholar 

  28. Girolami, D., Tufarelli, T., Adesso, G.: Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  29. Nakano, T., Piani, M., Adesso, G.: Phys. Rev. A 88, 012117 (2013)

    Article  ADS  Google Scholar 

  30. Liu, L., Zhang, J., Cheng, S., Tong, D.: J. Phys. Soc. Jpn. 82, 0640002 (2013)

    Google Scholar 

  31. Hao, X.N., Hou, J.C., Li, J.Q.: Quantum Inf. Process. 15, 2819 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  32. Ferraro, E., Scala, M., Migliore, R., Napoli, A.: Non-Markovian dissipative dynamics of two coupled qubits in independent reservoirs: Comparison between exact solutions and master-equation approaches. Phys. Rev. A 80, 042112 (2009)

    Article  ADS  Google Scholar 

  33. Scala, M., Migliore, R., Messina, A.: J. Phys. A Math. Theor. 41, 435304 (2008)

    Article  ADS  Google Scholar 

  34. Agarwal, G.: Quantum Statistical Theories of Spontaneous Emission and Their Relation to Other Approaches, vol. 70 of Springer Tracts in Modern Physics. Springer, Berlin (1974)

  35. Tanaś, R., Ficek, Z.: J. Opt. B Quantum Semiclassical Opt. 6, S90 (2004)

    Article  ADS  Google Scholar 

  36. Ficek, Z., Tanaś, R., Kielich, S.: Phys. A 146, 452 (1987)

    Article  Google Scholar 

  37. Auyuanet, A., Davidovich, L.: Phys. Rev. A 82, 032112 (2010)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Slaoui.

Appendices

Appendices

1.1 Appendix 1

The eigenvalues corresponding to this matrix \(\rho \) (5) are given by

$$\begin{aligned} {{\lambda _1} = \frac{1}{2}{t_1} + \frac{1}{2}\sqrt{{t_1}^2 - 4{d_1}} }, \qquad {{\lambda _2} = \frac{1}{2}{t_2} + \frac{1}{2}\sqrt{{t_2}^2 - 4{d_2}} } \end{aligned}$$
(64)
$$\begin{aligned} {{\lambda _3} = \frac{1}{2}{t_2} - \frac{1}{2}\sqrt{{t_2}^2 - 4{d_2}} }, {{\lambda _4} = \frac{1}{2}{t_1} - \frac{1}{2}\sqrt{{t_1}^2 - 4{d_1}} } \end{aligned}$$
(65)

where

$$\begin{aligned} {t_1} = {\rho _{11}} + {\rho _{44}},\quad {d_1} = {\rho _{11}}{\rho _{44}} - {\rho _{14}}{\rho _{41}},\quad {t_2} = {\rho _{22}} + {\rho _{33}},\quad {d_2} = {\rho _{22}}{\rho _{33}} - {\rho _{32}}{\rho _{23}}.\nonumber \\ \end{aligned}$$
(66)

The square root of the density matrix \(\rho \) can be written in terms of the matrix elements \(\rho \), in the computational basis, as follows:

$$\begin{aligned} \sqrt{\rho }= \left( {\begin{array}{*{20}{c}} {\frac{{{\rho _{11}} + \sqrt{{d_1}} }}{{\sqrt{{t_1} + 2\sqrt{{d_1}} } }}}&{}0&{}0&{}{\frac{{{\rho _{14}}}}{{\sqrt{{t_1} + 2\sqrt{{d_1}} } }}}\\ 0&{}{\frac{{{\rho _{22}} + \sqrt{{d_2}} }}{{\sqrt{{t_2} + 2\sqrt{{d_2}} } }}}&{}{\frac{{{\rho _{23}}}}{{\sqrt{{t_2} + 2\sqrt{{d_2}} } }}}&{}0\\ 0&{}{\frac{{{\rho _{32}}}}{{\sqrt{{t_2} + 2\sqrt{{d_2}} } }}}&{}{\frac{{{\rho _{33}} + \sqrt{{d_2}} }}{{\sqrt{{t_2} + 2\sqrt{{d_2}} } }}}&{}0\\ {\frac{{{\rho _{41}}}}{{\sqrt{{t_1} + 2\sqrt{{d_1}} } }}}&{}0&{}0&{}{\frac{{{\rho _{44}} + \sqrt{{d_1}} }}{{\sqrt{{t_1} + 2\sqrt{{d_1}} } }}} \end{array}} \right) . \end{aligned}$$
(67)

The eigenvalues \(\sqrt{{\lambda _1}} \), \(\sqrt{{\lambda _2}} \),\(\sqrt{{\lambda _3}} \) and \(\sqrt{{\lambda _4}} \) of the matrix \(\sqrt{\rho }\) can be rewritten as:

$$\begin{aligned} \sqrt{{\lambda _1}}= & {} \frac{1}{2}\sqrt{{t_1} + 2\sqrt{{d_1}} } + \frac{1}{2}\sqrt{{t_1} - 2\sqrt{{d_1}} } \end{aligned}$$
(68)
$$\begin{aligned} \sqrt{{\lambda _2}}= & {} \frac{1}{2}\sqrt{{t_2} + 2\sqrt{{d_2}} } + \frac{1}{2}\sqrt{{t_2} - 2\sqrt{{d_2}}} \end{aligned}$$
(69)
$$\begin{aligned} \sqrt{{\lambda _3}}= & {} \frac{1}{2}\sqrt{{t_2} + 2\sqrt{{d_2}} } - \frac{1}{2}\sqrt{{t_2} - 2\sqrt{{d_2}} } \end{aligned}$$
(70)
$$\begin{aligned} \sqrt{{\lambda _4}}= & {} \frac{1}{2}\sqrt{{t_1} + 2\sqrt{{d_1}} } - \frac{1}{2}\sqrt{t_{1} - 2\sqrt{d_{1} } } \end{aligned}$$
(71)

The matrix \(\sqrt{\rho }\) is written in the Fano–Bloch representation as:

$$\begin{aligned} \sqrt{\rho }= \frac{1}{4}\sum \limits _{\chi ,\delta } {{\mathcal {R}_{\chi \delta }}} {\sigma _\chi } \otimes {\sigma _\delta }, \end{aligned}$$
(72)

where \(\chi ,\delta = 0,1,2,3\) and the Fano–Bloch parameters are defined by: \({\mathcal {R}_{\chi \delta }} = \mathrm{Tr}\left( {\sqrt{\rho }{\sigma _\chi } \otimes {\sigma _\delta }} \right) \). The vanishing correlation parameters \({\mathcal {R}_{\chi \delta }}\) are given by:

$$\begin{aligned} \mathcal {R}_{00}= & {} \sqrt{{t_1} + 2\sqrt{{d_1}} } + \sqrt{{t_2} + 2\sqrt{{d_2}} } \end{aligned}$$
(73)
$$\begin{aligned} \mathcal {R}_{03}= & {} \frac{1}{2}\frac{{{T_{30}} + {T_{03}}}}{{\sqrt{{t_1} + 2\sqrt{{d_1}} } }} - \frac{1}{2}\frac{{{T_{30}} - {T_{03}}}}{{\sqrt{{t_2} + 2\sqrt{{d_2}} } }} \end{aligned}$$
(74)
$$\begin{aligned} \mathcal {R}_{30}= & {} \frac{1}{2}\frac{{{T_{30}} + {T_{03}}}}{{\sqrt{{t_1} + 2\sqrt{{d_1}} } }} + \frac{1}{2}\frac{{{T_{30}} - {T_{03}}}}{{\sqrt{{t_2} + 2\sqrt{{d_2}} } }} \end{aligned}$$
(75)
$$\begin{aligned} \mathcal {R}_{11}= & {} \frac{1}{2}\frac{{{T_{11}} + {T_{22}}}}{{\sqrt{{t_2} + 2\sqrt{{d_2}} } }} + \frac{1}{2}\frac{{{T_{11}} - {T_{22}}}}{{\sqrt{{t_1} + 2\sqrt{{d_1}} } }} \end{aligned}$$
(76)
$$\begin{aligned} \mathcal {R}_{12}= & {} \frac{1}{2}\frac{{{T_{12}} - {T_{21}}}}{{\sqrt{{t_2} + 2\sqrt{{d_2}} } }} + \frac{1}{2}\frac{{{T_{12}} + {T_{21}}}}{{\sqrt{{t_1} + 2\sqrt{{d_1}} } }} \end{aligned}$$
(77)
$$\begin{aligned} \mathcal {R}_{12}= & {} \frac{1}{2}\frac{{{T_{12}} - {T_{21}}}}{{\sqrt{{t_2} + 2\sqrt{{d_2}} } }} + \frac{1}{2}\frac{{{T_{12}} + {T_{21}}}}{{\sqrt{{t_1} + 2\sqrt{{d_1}} } }} \end{aligned}$$
(78)
$$\begin{aligned} \mathcal {R}_{21}= & {} \frac{1}{2}\frac{{{T_{12}} + {T_{21}}}}{{\sqrt{{t_1} + 2\sqrt{{d_1}} } }} - \frac{1}{2}\frac{{{T_{12}} - {T_{21}}}}{{\sqrt{{t_2} + 2\sqrt{{d_2}} } }} \end{aligned}$$
(79)
$$\begin{aligned} \mathcal {R}_{22}= & {} \frac{1}{2}\frac{{{T_{11}} + {T_{22}}}}{{\sqrt{{t_2} + 2\sqrt{{d_2}} } }} - \frac{1}{2}\frac{{{T_{11}} - {T_{22}}}}{{\sqrt{{t_1} + 2\sqrt{{d_1}} } }} \end{aligned}$$
(80)
$$\begin{aligned} \mathcal {R}_{33}= & {} \sqrt{{t_1} + 2\sqrt{{d_1}} } - \sqrt{{t_2} + 2\sqrt{{d_2}} } . \end{aligned}$$
(81)

1.2 Appendix 2

In this appendix, we give the expressions of the \(\gamma \left( t \right) \) function for sub-ohmic, ohmic and super-ohmic reservoirs [30].

1.2.1 (i) Sub-ohmic reservoirs

The sub-ohmic regime corresponds to the situation where \(0< s < 1\). In this case, the function \(\gamma \left( t \right) \) reads as [30]

$$\begin{aligned}&\gamma \left( t \right) = \frac{{2\lambda \varGamma \left( s \right) }}{{s - 1}}\left\{ {1 - {{\left( {1 - {\varOmega ^2}{t^2}} \right) }^{{{{\left( {1 - s} \right) }} /\!\ {2}}}}\cos \left[ {\left( {s - 1} \right) \arctan \left( {\varOmega t} \right) } \right] } \right\} \\&\quad + \frac{{4\lambda \varGamma \left( s \right) }}{{s - 1}}{\sum \limits _{m = 1}^\infty {\left( {1 + m\varOmega \beta } \right) } ^{1 - s}}\\&\quad \times \left\{ {1 - {{\left[ {1 + {{\left( {\frac{{\varOmega t}}{{1 + m\varOmega \beta }}} \right) }^2}} \right] }^{{{{\left( {1 - s} \right) }} \!/ \!{2}}}}\cos \left[ {\left( {s - 1} \right) \arctan \left( {\frac{{\varOmega t}}{{1 + m\varOmega \beta }}} \right) } \right] } \right\} , \end{aligned}$$

where \({\varGamma \left( s \right) }\) denotes the Gamma function. To study the evolution of the local quantum uncertainty, one should calculate the time derivative of the function \(\gamma \left( t \right) \) . It is given by

$$\begin{aligned}&{\frac{{\mathrm{d}\gamma \left( t \right) }}{{\mathrm{d}t}}= 2\lambda \varGamma \left( s \right) \varOmega } \nonumber \\&\quad {\left\{ {{{\left( {1 + {\varOmega ^2}{t^2}} \right) }^{{{ - s} / 2}}}\sin \left[ {s\arctan \left( {\varOmega t} \right) } \right] + 2{{\sum \limits _{m = 1}^\infty {\left[ {{{\left( {1 + m\varOmega \beta } \right) }^2}+ {\varOmega ^2}{t^2}} \right] } }^{{{ - s} / 2}}}\sin \left[ {s\arctan \left( {\frac{{\varOmega t}}{{1 + m\varOmega \beta }}} \right) } \right] } \right\} }\nonumber \\ \end{aligned}$$
(82)

1.2.2 (ii) Ohmic reservoirs

For reservoirs of ohmic type \((s = 1)\), the low-frequency behavior of the function \(J\left( \omega \right) \) is linear in terms of \(\omega \). The Eq. (29) becomes [30]

$$\begin{aligned} \gamma \left( t \right) = \lambda \left[ {\ln \left( {1 + {\varOmega ^2}{t^2}} \right) + 4\ln \varGamma \left( {1 + \frac{1}{{\varOmega \beta }}} \right) - 2\ln {{\left| {\varGamma \left( {1 + \frac{1}{{\varOmega \beta }} + i\frac{t}{\beta }} \right) } \right| }^2}} \right] \nonumber \\ \end{aligned}$$
(83)

The time derivative of the function \(\gamma \left( t \right) \) is given by

$$\begin{aligned} \frac{{\mathrm{d}\gamma \left( t \right) }}{{\mathrm{d}t}} = 2\lambda {\varOmega ^2}t\left[ {\frac{1}{{1 + {\varOmega ^2}{t^2}}} + \sum \limits _{m = 1}^\infty {\frac{2}{{{{\left( {1 + m\varOmega \beta } \right) }^2} + {\varOmega ^2}{t^2}}}} } \right] . \end{aligned}$$
(84)

1.2.3 (iii) Super-ohmic reservoirs

For super-ohmic reservoirs \((s > 1)\), the function \(\gamma \left( t \right) \) reads as [30]

$$\begin{aligned}&\gamma \left( t \right) = 2\lambda \varGamma \left( {s - 1} \right) \left\{ {1 - {{\left( {1 + {\varOmega ^2}{t^2}} \right) }^{{{1 - s} / 2}}}\cos \left[ {\left( {s - 1} \right) \arctan \left( {\varOmega t} \right) } \right] } \right\} \\&\quad + 4\lambda \varGamma \left( {s - 1} \right) \sum \limits _{m = 1}^\infty {{{\left( {1 + m\varOmega \beta } \right) }^{1 - s}}}\\&\quad {\left\{ {1 - {{\left[ {1 + {{\left( {\frac{{\varOmega t}}{{1 + m\varOmega \beta }}} \right) }^2}} \right] }^{{{\left( {1 - s} \right) } / 2}}}\cos \left[ {\left( {s - 1} \right) \arctan \left( {\frac{{\varOmega t}}{{1 + m\varOmega \beta }}} \right) } \right] } \right\} }, \end{aligned}$$

and the derivative of \(\gamma \left( t \right) \) with respect to time t is given by

$$\begin{aligned} \frac{{\mathrm{d}\gamma \left( t \right) }}{{\mathrm{d}t}}&= 2\lambda \varOmega \varGamma \left( s \right) {\left( {1 + {\varOmega ^2}{t^2}} \right) ^{{{ - s} / 2}}}\sin \left[ {s\arctan \left( {\varOmega t} \right) } \right] \\&\quad + 4\lambda \varOmega \varGamma \left( s \right) {\sum \limits _{m = 1}^\infty {\left[ {{{\left( {1 + m\varOmega \beta } \right) }^2} + {\varOmega ^2}{t^2}} \right] } ^{ - {s / 2}}}\sin \left[ {s\arctan \left( {\frac{{\varOmega t}}{{1 + m\varOmega \beta }}} \right) } \right] . \end{aligned}$$

Due to the complicated expression of \(\gamma \left( t \right) \) and to simplify our numerical calculations, we have chosen the situation where \(1 < s \le 2\) and the temperature equals zero. In this case case, the function \(\gamma \left( t \right) \) becomes

$$\begin{aligned} \gamma \left( t \right) = 2\lambda \varGamma \left( {s - 1} \right) \left\{ {1 - {{\left( {1 + {\varOmega ^2}{t^2}} \right) }^{{{\left( {1 - s} \right) } / 2}}}\cos \left[ {\left( {s - 1} \right) \arctan \left( {\varOmega t} \right) } \right] } \right\} . \end{aligned}$$
(85)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slaoui, A., Daoud, M. & Laamara, R.A. The dynamics of local quantum uncertainty and trace distance discord for two-qubit X states under decoherence: a comparative study. Quantum Inf Process 17, 178 (2018). https://doi.org/10.1007/s11128-018-1942-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1942-6

Keywords

Navigation