Skip to main content
Log in

The dynamic behaviors of local quantum uncertainty for three-qubit X states under decoherence channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We derive the analytical expression of local quantum uncertainty for three-qubit X states. We give also the expressions of quantum discord and the negativity. A comparison of these three quantum correlations quantifiers is discussed in the special cases of mixed GHZ states and Bell-type states. We find that local quantum uncertainty gives the same amount of non-classical correlations as are measured by entropic quantum discord and goes beyond negativity. We also discuss the dynamics of non-classical correlations under the effect of phase damping, depolarizing and phase reversal channels. We find the local quantum uncertainty shows more robustness and exhibits, under phase reversal effect, revival and frozen phenomena. The monogamy property of local quantum uncertainty is also discussed. It is shown that it is monogamous for three-qubit states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Information and Quantum Computation. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Le Bellac, M.: A Short Introduction to Quantum Information and Quantum Computation. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  3. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 6660 (1997)

    Article  Google Scholar 

  4. Braunstein, S.L., Kimble, H.J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869 (1998)

    Article  ADS  Google Scholar 

  5. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656 (1996)

    Article  ADS  Google Scholar 

  6. Li, X., Pan, Q., Jing, J., Zhang, J., Xie, C., Peng, K.: Quantum dense coding exploiting a bright Einstein–Podolsky–Rosen beam. Phys. Rev. Lett. 88, 047904 (2002)

    Article  ADS  Google Scholar 

  7. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 557 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  8. Daoud, M., Ez-Zahraouy, H.: Three-dimensional quantum key distribution in the presence of several eavesdroppers. Physica Scr. 84, 045018 (2011)

    Article  ADS  Google Scholar 

  9. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  10. Bell, J.S.: On the einstein podolsky rosen paradox. Physics 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  11. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. Wootters, W.K.: Entanglement of formation and concurrence. Quantum Inf. Comput. 1, 27–44 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  14. Popescu, S., Rohrlich, D.: On the measure of entanglement for pure states. Phys. Rev. A 56, R3319 (1997)

    Article  ADS  Google Scholar 

  15. Bose, S., Vedral, V.: Mixedness and teleportation. Phys. Rev. A 61, 040101 (2000)

    Article  ADS  Google Scholar 

  16. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  17. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  18. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  19. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  20. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  21. Yurischev, M.A.: On the quantum discord of general X states. Quantum Inf. Process. 14, 3399 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Chakrabarty, I., Agrawal, P., Pati, A.K.: Quantum dissension: generalizing quantum discord for three-qubit states. Eur. Phys. J. D 65, 605 (2011)

    Article  ADS  Google Scholar 

  23. Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  24. Girolami, D., Adesso, G.: Quantum discord for general two-qubit states: analytical progress. Phys. Rev. A 83(5), 052108 (2011)

    Article  ADS  Google Scholar 

  25. Huang, Z., Qiu, D.: Geometric quantum discord under noisy environment. Quantum Inf. Process. 15, 1979–1998 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  26. Daoud, M., Laamara, R.A., Seddik, S.: Hilbert–Schmidt measure of pairwise quantum discord for three-qubit \(X\) states. Rep. Math. Phys. 76, 207–230 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  27. Daoud, M., Laamara, R.A., Essaber, R., Kaydi, W.: Global quantum correlations in tripartite nonorthogonal states and monogamy properties. Physica Scr. 89, 065004 (2014)

    Article  ADS  Google Scholar 

  28. Piani, M.: Problem with geometric discord. Phys. Rev. A 86, 034101 (2012)

    Article  ADS  Google Scholar 

  29. Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)

    Article  ADS  Google Scholar 

  30. Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  Google Scholar 

  31. Huang, Z., Qiu, D., Mateus, P.: Geometry and dynamics of one-norm geometric quantum discord. Quantum Inf. Process. 15, 301–326 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  32. Huang, Z.: Dynamics of quantum correlation of atoms immersed in a thermal quantum scalar fields with a boundary. Quantum Inf. Process. 17, 221 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  33. Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  34. Slaoui, A., Daoud, M., Ahl Laamara, R.: The dynamics of local quantum uncertainty and trace distance discord for two-qubit \(X\) states under decoherence: a comparative study. Quantum Inf. Process. 17, 178 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  35. Wigner, E.P., Yanase, M.M.: Information contents of distributions. Proc. Natl. Acad. Sci. USA 49, 910 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  36. Luo, S.L.: Quantum versus classical uncertainty. Theor. Math. Phys. 143, 681–688 (2005)

    Article  Google Scholar 

  37. Luo, S.L.: Wigner-Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003)

    Article  ADS  Google Scholar 

  38. Frieden, B.R.: Science from Fisher Information: A Unification. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  39. Slaoui, A., Bakmou, L., Daoud, M., Laamara, R.A.: A comparative study of local quantum Fisher information and local quantum uncertainty in Heisenberg \(XY\) model. Phys. Lett. A 383, 2241–2247 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  40. Luo, S.L., Fu, S.S., Oh, C.H.: Quantifying correlations via the Wigner-Yanase skew information. Phys. Rev. A 85, 032117 (2012)

    Article  ADS  Google Scholar 

  41. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  42. Du, S.P., Bai, Z.F.: The Wigner-Yanase information can increase under phase sensitive incoherent operations. Ann. Phys. (New York) 359, 136 (2015)

    Article  MathSciNet  Google Scholar 

  43. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  44. Kraus, K.: States, Effect, and Operations: Fundamental Notions in Quantum Theory. Springer, Berlin (1983)

    Book  Google Scholar 

  45. Nielson, M.A., Chuang, I.L.: Quantum computation and quantum information. Am. J. Phys. 70, 558 (2002)

    Article  ADS  Google Scholar 

  46. Slaoui, A., Shaukat, M.I., Daoud, M., Ahl Laamara, R.: Universal evolution of non-classical correlations due to collective spontaneous emission. Eur. Phys. J. Plus 133, 413 (2018)

    Article  Google Scholar 

  47. Huang, Z., Zhang, C.: Protecting quantum correlation from correlated amplitude damping channel. Braz. J. Phys. 47, 400–405 (2017)

    Article  ADS  Google Scholar 

  48. Sen, A., Bhar, A., Sarkar, D.: Local quantum uncertainty and bounds on quantumness for orthogonally invariant class of states. Quantum Inf. Process. 14, 269–285 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  49. Vinjanampathy, S., Rau, A.: Calculation of quantum discord for qubit-qudit or \(N\) qubits. arXiv:1106.4488 (2011)

  50. Giorgi, G.L., Bellomo, B., Galve, F., Zambrini, R.: Genuine quantum and classical correlations in multipartite systems. Phys. Rev. Lett. 107, 190501 (2011)

    Article  ADS  Google Scholar 

  51. Cabello, A.: Bell’s theorem with and without inequalities for the three-qubit Greenberger–Horne–Zeilinger and W states. Phys. Rev. A 65, 032108 (2002)

    Article  ADS  Google Scholar 

  52. Sabin, C., Garcia-Alcaine, G.: A classification of entanglement in three-qubit systems. Eur. Phys. J. D 48, 435 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  53. Weinstein, Y.S.: Tripartite entanglement witnesses and entanglement sudden death. Phys. Rev. A 79, 012318 (2009)

    Article  ADS  Google Scholar 

  54. Hamieh, S., Kobes, R., Zaraket, H.: Positive-operator-valued measure optimization of classical correlations. Phys. Rev. A 70, 052325 (2004)

    Article  ADS  Google Scholar 

  55. Buscemi, F., Bordone, P.: Time evolution of tripartite quantum discord and entanglement under local and nonlocal random telegraph noise. Phys. Rev. A 87, 042310 (2013)

    Article  ADS  Google Scholar 

  56. Beggi, A., Buscemi, F., Bordone, P.: Analytical expression of genuine tripartite quantum discord for symmetrical \(X\)-states. Quantum Inf. Process. 14, 573–592 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  57. Kim, J.S., Gour, G., Sanders, B.C.: Limitations to sharing entanglement. Contemp. Phys. 53, 417–432 (2012)

    Article  ADS  Google Scholar 

  58. Streltsov, A., Adesso, G., Piani, M., Bruss, D.: Are general quantum correlations monogamous? Phys. Rev. Lett. 109, 050503 (2012)

    Article  ADS  Google Scholar 

  59. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Slaoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we give the necessary tools to compute the local quantum uncertainty for three-qubit X states. First, the eigenvalues corresponding to density matrix \({\rho _{123}}\) of the form (5) are given by

$$\begin{aligned} \begin{gathered} \lambda _1^ \pm = \frac{1}{2}{t_1} \pm \frac{1}{2}\sqrt{{t_1}^2 - 4{d_1}}, \\ \lambda _2^ \pm = \frac{1}{2}{t_2} \pm \frac{1}{2}\sqrt{{t_2}^2 - 4{d_2}}, \\ \lambda _3^ \pm = \frac{1}{2}{t_3} \pm \frac{1}{2}\sqrt{{t_3}^2 - 4{d_3}}, \\ \lambda _4^ \pm = \frac{1}{2}{t_4} \pm \frac{1}{2}\sqrt{{t_4}^2 - 4{d_4}}, \\ \end{gathered} \end{aligned}$$
(93)

where

$$\begin{aligned} \begin{array}{l} t_1 = \rho _{11} + \rho _{88},\\ t_2 = \rho _{22} + \rho _{77},\\ t_3 = \rho _{33} + \rho _{66},\\ t_4 = \rho _{44} + \rho _{55}, \end{array} \begin{array}{l} d_1 = \rho _{11}\rho _{88} - \rho _{18}\rho _{81},\\ d_2 = \rho _{22}\rho _{77} - \rho _{27}\rho _{72},\\ d_3 = \rho _{33}\rho _{66} - \rho _{36}\rho _{63},\\ d_4 = \rho _{44}\rho _{55} - \rho _{45}\rho _{54}. \end{array} \end{aligned}$$
(94)

The matrix \(\sqrt{{\rho _{123}}}\) is also X-shaped and has the form

$$\begin{aligned} \sqrt{{\rho _{123}}} = \left( {\begin{array}{*{20}{c}} {\frac{{{\rho _{11}} + \sqrt{{d_1}} }}{{\sqrt{{t_1} + 2\sqrt{{d_1}} } }}}&{}0&{}0&{}0&{}0&{}0&{}0&{}{\frac{{{\rho _{18}}}}{{\sqrt{{t_1} + 2\sqrt{{d_1}} } }}} \\ 0&{}{\frac{{{\rho _{22}} + \sqrt{{d_2}} }}{{\sqrt{{t_2} + 2\sqrt{{d_2}} } }}}&{}0&{}0&{}0&{}0&{}{\frac{{{\rho _{27}}}}{{\sqrt{{t_2} + 2\sqrt{{d_2}} } }}}&{}0 \\ 0&{}0&{}{\frac{{{\rho _{33}} + \sqrt{{d_3}} }}{{\sqrt{{t_3} + 2\sqrt{{d_3}} } }}}&{}0&{}0&{}{\frac{{{\rho _{36}}}}{{\sqrt{{t_3} + 2\sqrt{{d_3}} } }}}&{}0&{}0 \\ 0&{}0&{}0&{}{\frac{{{\rho _{44}} + \sqrt{{d_4}} }}{{\sqrt{{t_4} + 2\sqrt{{d_4}} } }}}&{}{\frac{{{\rho _{45}}}}{{\sqrt{{t_4} + 2\sqrt{{d_4}} } }}}&{}0&{}0&{}0 \\ 0&{}0&{}0&{}{\frac{{{\rho _{54}}}}{{\sqrt{{t_4} + 2\sqrt{{d_4}} } }}}&{}{\frac{{{\rho _{55}} + \sqrt{{d_4}} }}{{\sqrt{{t_4} + 2\sqrt{{d_4}} } }}}&{}0&{}0&{}0 \\ 0&{}0&{}{\frac{{{\rho _{63}}}}{{\sqrt{{t_3} + 2\sqrt{{d_3}} } }}}&{}0&{}0&{}{\frac{{{\rho _{66}} + \sqrt{{d_3}} }}{{\sqrt{{t_3} + 2\sqrt{{d_3}} } }}}&{}0&{}0 \\ 0&{}{\frac{{{\rho _{72}}}}{{\sqrt{{t_2} + 2\sqrt{{d_2}} } }}}&{}0&{}0&{}0&{}0&{}{\frac{{{\rho _{77}} + \sqrt{{d_2}} }}{{\sqrt{{t_2} + 2\sqrt{{d_2}} } }}}&{}0 \\ {\frac{{{\rho _{81}}}}{{\sqrt{{t_1} + 2\sqrt{{d_1}} } }}}&{}0&{}0&{}0&{}0&{}0&{}0&{}{\frac{{{\rho _{88}} + \sqrt{{d_1}} }}{{\sqrt{{t_1} + 2\sqrt{{d_1}} } }}} \end{array}} \right) . \end{aligned}$$

In the Fano–Bloch representation, the matrix \(\sqrt{{\rho _{123}}}\) rewrites as

$$\begin{aligned} \sqrt{{\rho _{123}}} = \sum \limits _{\chi \delta \eta } {{T_{\chi \delta \eta }}} {\sigma _\chi } \otimes {\sigma _\delta } \otimes {\sigma _\eta }, \end{aligned}$$
(95)

where \(\chi ,\delta ,\eta = 0,1,2,3\) and the Fano–Bloch parameters are defined by \({T_{\chi \delta \eta }} = \mathrm{tr}\left( {\sqrt{{\rho _{123}}} {\sigma _\chi } \otimes {\sigma _\delta } \otimes {\sigma _\eta }} \right) \).

The non-vanishing elements \({T_{\chi \delta \eta }}\) are given by

$$\begin{aligned} {T_{111}}&= \frac{{{R_{111}} - {R_{221}} - {R_{122}} - {R_{212}}}}{{4\sqrt{{t_1} + 2\sqrt{{d_1}} } }} + \frac{{{R_{111}} - {R_{221}} + {R_{122}} + {R_{212}}}}{{4\sqrt{{t_2} + 2\sqrt{{d_2}} } }} \nonumber \\&\quad + \frac{{{R_{111}} + {R_{221}} + {R_{122}} - {R_{212}}}}{{4\sqrt{{t_3} + 2\sqrt{{d_3}} } }} + \frac{{{R_{111}} + {R_{221}} - {R_{122}} + {R_{212}}}}{{4\sqrt{{t_4} + 2\sqrt{{d_4}} } }}, \end{aligned}$$
(96)
$$\begin{aligned} {T_{211}}&= \frac{{{R_{112}} + {R_{121}} + {R_{211}} - {R_{222}}}}{{4\sqrt{{t_1} + 2\sqrt{{d_1}} } }} + \frac{{{R_{222}} + {R_{121}} + {R_{211}} - {R_{112}}}}{{4\sqrt{{t_2} + 2\sqrt{{d_2}} } }} \nonumber \\&\quad + \frac{{{R_{121}} - {R_{211}} - {R_{112}} - {R_{222}}}}{{4\sqrt{{t_3} + 2\sqrt{{d_3}} } }} + \frac{{{R_{121}} + {R_{112}} + {R_{222}} - {R_{211}}}}{{4\sqrt{{t_4} + 2\sqrt{{d_4}} } }}, \end{aligned}$$
(97)
$$\begin{aligned} {T_{121}}&= \frac{{{R_{112}} + {R_{121}} + {R_{211}} - {R_{222}}}}{{4\sqrt{{t_1} + 2\sqrt{{d_1}} } }} + \frac{{{R_{112}} - {R_{222}} - {R_{121}} - {R_{211}}}}{{4\sqrt{{t_2} + 2\sqrt{{d_2}} } }} \nonumber \\&\quad + \frac{{{R_{211}} + {R_{112}} + {R_{222}} - {R_{121}}}}{{4\sqrt{{t_3} + 2\sqrt{{d_3}} } }} + \frac{{{R_{121}} + {R_{112}} + {R_{222}} - {R_{211}}}}{{4\sqrt{{t_4} + 2\sqrt{{d_4}} } }}, \end{aligned}$$
(98)
$$\begin{aligned} {T_{221}}&= \frac{{{R_{221}} + {R_{122}} + {R_{212}} - {R_{111}}}}{{4\sqrt{{t_1} + 2\sqrt{{d_1}} } }} + \frac{{{R_{111}} - {R_{221}} + {R_{122}} + {R_{212}}}}{{4\sqrt{{t_2} + 2\sqrt{{d_2}} } }} \nonumber \\&\quad + \frac{{{R_{111}} + {R_{221}} + {R_{122}} - {R_{212}}}}{{4\sqrt{{t_3} + 2\sqrt{{d_3}} } }} + \frac{{{R_{122}} - {R_{111}} - {R_{221}} - {R_{212}}}}{{4\sqrt{{t_4} + 2\sqrt{{d_4}} } }}, \end{aligned}$$
(99)
$$\begin{aligned} {T_{112}}&= \frac{{{R_{112}} + {R_{121}} + {R_{211}} - {R_{222}}}}{{4\sqrt{{t_1} + 2\sqrt{{d_1}} } }} + \frac{{{R_{222}} + {R_{121}} + {R_{211}} - {R_{112}}}}{{4\sqrt{{t_2} + 2\sqrt{{d_2}} } }} \nonumber \\&\quad + \frac{{{R_{211}} + {R_{112}} + {R_{222}} - {R_{121}}}}{{4\sqrt{{t_3} + 2\sqrt{{d_3}} } }} + \frac{{{R_{211}} - {R_{121}} - {R_{112}} - {R_{222}}}}{{4\sqrt{{t_4} + 2\sqrt{{d_4}} } }}, \end{aligned}$$
(100)
$$\begin{aligned} {T_{122}}&= \frac{{{R_{221}} + {R_{122}} + {R_{212}} - {R_{111}}}}{{4\sqrt{{t_1} + 2\sqrt{{d_1}} } }} + \frac{{{R_{111}} - {R_{221}} + {R_{122}} + {R_{212}}}}{{4\sqrt{{t_2} + 2\sqrt{{d_2}} } }} \nonumber \\&\quad + \frac{{{R_{212}} - {R_{111}} - {R_{221}} - {R_{122}}}}{{4\sqrt{{t_3} + 2\sqrt{{d_3}} } }} + \frac{{{R_{111}} + {R_{221}} - {R_{122}} + {R_{212}}}}{{4\sqrt{{t_4} + 2\sqrt{{d_4}} } }}, \end{aligned}$$
(101)
$$\begin{aligned} {T_{212}}&= \frac{{{R_{221}} + {R_{122}} + {R_{212}} - {R_{111}}}}{{4\sqrt{{t_1} + 2\sqrt{{d_1}} } }} + \frac{{{R_{221}} - {R_{111}} - {R_{122}} - {R_{212}}}}{{4\sqrt{{t_2} + 2\sqrt{{d_2}} } }} \nonumber \\&\quad + \frac{{{R_{111}} + {R_{221}} + {R_{122}} - {R_{212}}}}{{4\sqrt{{t_3} + 2\sqrt{{d_3}} } }} + \frac{{{R_{111}} + {R_{221}} - {R_{122}} + {R_{212}}}}{{4\sqrt{{t_4} + 2\sqrt{{d_4}} } }}, \end{aligned}$$
(102)
$$\begin{aligned} {T_{222}}&= \frac{{{R_{222}} - {R_{112}} - {R_{121}} - {R_{211}}}}{{4\sqrt{{t_1} + 2\sqrt{{d_1}} } }} + \frac{{{R_{222}} + {R_{121}} + {R_{211}} - {R_{112}}}}{{4\sqrt{{t_2} + 2\sqrt{{d_2}} } }} \nonumber \\&\quad + \frac{{{R_{211}} + {R_{112}} + {R_{222}} - {R_{121}}}}{{4\sqrt{{t_3} + 2\sqrt{{d_3}} } }} + \frac{{{R_{121}} + {R_{112}} + {R_{222}} - {R_{211}}}}{{4\sqrt{{t_4} + 2\sqrt{{d_4}} } }}, \end{aligned}$$
(103)
$$\begin{aligned} {T_{000}}&= \sqrt{{t_1} + 2\sqrt{{d_1}} } + \sqrt{{t_2} + 2\sqrt{{d_2}} } + \sqrt{{t_3} + 2\sqrt{{d_3}} } + \sqrt{{t_4} + 2\sqrt{{d_4}} }, \end{aligned}$$
(104)
$$\begin{aligned} {T_{030}}&= \frac{{{R_{030}} + {R_{300}} + {R_{003}} + {R_{333}}}}{{4\sqrt{{t_1} + 2\sqrt{{d_1}} } }} + \frac{{{R_{333}} + {R_{003}} - {R_{030}} - {R_{300}}}}{{4\sqrt{{t_2} + 2\sqrt{{d_2}} } }} \nonumber \\&\quad + \frac{{{R_{300}} + {R_{003}} - {R_{030}} - {R_{333}}}}{{4\sqrt{{t_3} + 2\sqrt{{d_3}} } }} + \frac{{{R_{030}} - {R_{300}} + {R_{003}} - {R_{333}}}}{{4\sqrt{{t_4} + 2\sqrt{{d_4}} } }}, \end{aligned}$$
(105)
$$\begin{aligned} {T_{300}}&= \frac{{{R_{030}} + {R_{300}} + {R_{003}} + {R_{333}}}}{{4\sqrt{{t_1} + 2\sqrt{{d_1}} } }} - \frac{{{R_{333}} + {R_{003}} - {R_{030}} - {R_{300}}}}{{4\sqrt{{t_2} + 2\sqrt{{d_2}} } }} \nonumber \\&\quad - \frac{{{R_{300}} + {R_{003}} - {R_{030}} - {R_{333}}}}{{4\sqrt{{t_3} + 2\sqrt{{d_3}} } }} + \frac{{{R_{030}} - {R_{300}} + {R_{003}} - {R_{333}}}}{{4\sqrt{{t_4} + 2\sqrt{{d_4}} } }}, \end{aligned}$$
(106)
$$\begin{aligned} {T_{330}}&= \sqrt{{t_1} + 2\sqrt{{d_1}} } - \sqrt{{t_2} + 2\sqrt{{d_2}} } - \sqrt{{t_3} + 2\sqrt{{d_3}} } + \sqrt{{t_4} + 2\sqrt{{d_4}} }, \end{aligned}$$
(107)
$$\begin{aligned} {T_{003}}&= \frac{{{R_{030}} + {R_{300}} + {R_{003}} + {R_{333}}}}{{4\sqrt{{t_1} + 2\sqrt{{d_1}} } }} + \frac{{{R_{030}} + {R_{300}} - {R_{333}} - {R_{003}}}}{{4\sqrt{{t_2} + 2\sqrt{{d_2}} } }} \nonumber \\&\quad + \frac{{{R_{300}} + {R_{003}} - {R_{030}} - {R_{333}}}}{{4\sqrt{{t_3} + 2\sqrt{{d_3}} } }} + \frac{{{R_{300}} + {R_{333}} - {R_{003}} - {R_{030}}}}{{4\sqrt{{t_4} + 2\sqrt{{d_4}} } }}, \end{aligned}$$
(108)
$$\begin{aligned} {T_{033}}&= \sqrt{{t_1} + 2\sqrt{{d_1}} } - \sqrt{{t_2} + 2\sqrt{{d_2}} } + \sqrt{{t_3} + 2\sqrt{{d_3}} } - \sqrt{{t_4} + 2\sqrt{{d_4}} }, \end{aligned}$$
(109)
$$\begin{aligned} {T_{303}}&= \sqrt{{t_1} + 2\sqrt{{d_1}} } + \sqrt{{t_2} + 2\sqrt{{d_2}} } - \sqrt{{t_3} + 2\sqrt{{d_3}} } - \sqrt{{t_4} + 2\sqrt{{d_4}} }, \end{aligned}$$
(110)
$$\begin{aligned} {T_{333}}&= \frac{{{R_{030}} + {R_{300}} + {R_{003}} + {R_{333}}}}{{4\sqrt{{t_1} + 2\sqrt{{d_1}} } }} + \frac{{{R_{333}} + {R_{003}} - {R_{030}} - {R_{300}}}}{{4\sqrt{{t_2} + 2\sqrt{{d_2}} } }} \nonumber \\&\quad + \frac{{{R_{030}} + {R_{333}} - {R_{300}} - {R_{003}}}}{{4\sqrt{{t_3} + 2\sqrt{{d_3}} } }} + \frac{{{R_{300}} + {R_{333}} - {R_{003}} - {R_{030}}}}{{4\sqrt{{t_4} + 2\sqrt{{d_4}} } }}. \end{aligned}$$
(111)

The eigenvalues \(\sqrt{\lambda _1^ \pm } \),\(\sqrt{\lambda _2^ \pm }\), \(\sqrt{\lambda _3^ \pm } \) and \(\sqrt{\lambda _4^ \pm } \) of the matrix \(\sqrt{{\rho _{123}}} \) are given by

$$\begin{aligned} \begin{array}{l} \sqrt{\lambda _1^ \pm } = \frac{1}{2}\sqrt{{t_1} + 2\sqrt{{d_1}} } \pm \sqrt{{t_1} - 2\sqrt{{d_1}} }, \\ \sqrt{\lambda _2^ \pm } = \frac{1}{2}\sqrt{{t_2} + 2\sqrt{{d_2}} } \pm \sqrt{{t_2} - 2\sqrt{{d_2}} }, \\ \sqrt{\lambda _3^ \pm } = \frac{1}{2}\sqrt{{t_3} + 2\sqrt{{d_3}} } \pm \sqrt{{t_3} - 2\sqrt{{d_3}} }, \\ \sqrt{\lambda _4^ \pm } = \frac{1}{2}\sqrt{{t_4} + 2\sqrt{{d_4}} } \pm \sqrt{{t_4} - 2\sqrt{{d_4}} }. \end{array} \end{aligned}$$
(112)

The elements of the matrix W defined by (3) are given in terms of \({R_{\alpha \beta \gamma }}\) and \(\sqrt{\lambda _{'i}^ \pm } \) by

$$\begin{aligned} {w_{12}}&= {w_{21}} = \frac{{\left( {{R_{111}} - {R_{212}}} \right) \left( {{R_{121}} - {R_{222}}} \right) + \left( {{R_{221}} + {R_{122}}} \right) \left( {{R_{112}} + {R_{211}}} \right) }}{{8\left( {\sqrt{\lambda _1^ + } + \sqrt{\lambda _1^ - } } \right) \left( {\sqrt{\lambda _3^ + } + \sqrt{\lambda _3^ - } } \right) }} \\&\quad + \frac{{\left( {{R_{111}} + {R_{212}}} \right) \left( {{R_{121}} + {R_{222}}} \right) + \left( {{R_{122}} - {R_{221}}} \right) \left( {{R_{112}} - {R_{211}}} \right) }}{{8\left( {\sqrt{\lambda _2^ + } + \sqrt{\lambda _2^ - } } \right) \left( {\sqrt{\lambda _4^ + } + \sqrt{\lambda _4^ - } } \right) }}\\ {w_{11}}&= \left( {\sqrt{\lambda _1^ + } + \sqrt{\lambda _1^ - } } \right) \left( {\sqrt{\lambda _3^ + } + \sqrt{\lambda _3^ - } } \right) + \left( {\sqrt{\lambda _2^ + } + \sqrt{\lambda _2^ - } } \right) \left( {\sqrt{\lambda _4^ + } + \sqrt{\lambda _4^ - } } \right) \\&\quad +\frac{{{{\left( {{R_{300}} + {R_{003}}} \right) }^2} + {{\left( {{R_{111}} - {R_{212}}} \right) }^2} - {{\left( {{R_{221}} + {R_{122}}} \right) }^2} + {{\left( {{R_{112}} + {R_{211}}} \right) }^2} - {{\left( {{R_{121}} - {R_{222}}} \right) }^2} - {{\left( {{R_{030}} + {R_{333}}} \right) }^2}}}{{16\left( {\sqrt{\lambda _1^ + } + \sqrt{\lambda _1^ - } } \right) \left( {\sqrt{\lambda _3^ + } + \sqrt{\lambda _3^ - } } \right) }} \\&\quad +\frac{{{{\left( {{R_{111}} + {R_{212}}} \right) }^2} - {{\left( {{R_{122}} - {R_{221}}} \right) }^2} + {{\left( {{R_{112}} - {R_{211}}} \right) }^2} - {{\left( {{R_{121}} + {R_{222}}} \right) }^2} + {{\left( {{R_{003}} - {R_{300}}} \right) }^2} - {{\left( {{R_{333}} - {R_{030}}} \right) }^2}}}{{16\left( {\sqrt{\lambda _2^ + } + \sqrt{\lambda _2^ - } } \right) \left( {\sqrt{\lambda _4^ + } + \sqrt{\lambda _4^ - } } \right) }},\\ {w_{22}}&= \left( {\sqrt{\lambda _1^ + } + \sqrt{\lambda _1^ - } } \right) \left( {\sqrt{\lambda _3^ + } + \sqrt{\lambda _3^ - } } \right) + \left( {\sqrt{\lambda _2^ + } + \sqrt{\lambda _2^ - } } \right) \left( {\sqrt{\lambda _4^ + } + \sqrt{\lambda _4^ - } } \right) \\&\quad + \frac{{{{\left( {{R_{221}} + {R_{122}}} \right) }^2} - {{\left( {{R_{111}} - {R_{212}}} \right) }^2} + {{\left( {{R_{121}} - {R_{222}}} \right) }^2} - {{\left( {{R_{112}} + {R_{211}}} \right) }^2} + {{\left( {{R_{300}} + {R_{003}}} \right) }^2} - {{\left( {{R_{030}} + {R_{333}}} \right) }^2}}}{{16\left( {\sqrt{\lambda _1^ + } + \sqrt{\lambda _1^ - } } \right) \left( {\sqrt{\lambda _3^ + } + \sqrt{\lambda _3^ - } } \right) }} \\&\quad +\frac{{{{\left( {{R_{122}} - {R_{221}}} \right) }^2} - {{\left( {{R_{111}} + {R_{212}}} \right) }^2} + {{\left( {{R_{121}} + {R_{222}}} \right) }^2} - {{\left( {{R_{112}} - {R_{211}}} \right) }^2} + {{\left( {{R_{003}} - {R_{300}}} \right) }^2} - {{\left( {{R_{333}} - {R_{030}}} \right) }^2}}}{{16\left( {\sqrt{\lambda _2^ + } + \sqrt{\lambda _2^ - } } \right) \left( {\sqrt{\lambda _4^ + } + \sqrt{\lambda _4^ - } } \right) }},\\ {w_{33}}&=\frac{1}{2}\left[ {{{\left( {\sqrt{\lambda _1^ + } + \sqrt{\lambda _1^ - } } \right) }^2} + {{\left( {\sqrt{\lambda _3^ + } + \sqrt{\lambda _3^ - } } \right) }^2} + {{\left( {\sqrt{\lambda _2^ + } + \sqrt{\lambda _2^ - } } \right) }^2} + {{\left( {\sqrt{\lambda _4^ + } + \sqrt{\lambda _4^ - } } \right) }^2}} \right] \\&\quad + \frac{1}{{32}}\left[ {\frac{{{{\left( {{R_{033}} + {R_{300}} + {R_{003}} + {R_{333}}} \right) }^2} - {{\left( {{R_{112}} + {R_{121}} + {R_{211}} - {R_{222}}} \right) }^2} - {{\left( {{R_{111}} - {R_{221}} - {R_{122}} - {R_{212}}} \right) }^2}}}{{{{\left( {\sqrt{\lambda _1^ + } + \sqrt{\lambda _1^ - } } \right) }^2}}}} \right] \\&\quad + \frac{1}{{32}}\left[ {\frac{{{{\left( {{R_{333}} + {R_{003}} - {R_{300}} - {R_{030}}} \right) }^2} - {{\left( {{R_{222}} + {R_{121}} + {R_{211}} - {R_{112}}} \right) }^2} - {{\left( {{R_{111}} - {R_{221}} + {R_{122}} + {R_{212}}} \right) }^2}}}{{{{\left( {\sqrt{\lambda _2^ + } + \sqrt{\lambda _2^ - } } \right) }^2}}}} \right] \\&\quad + \frac{1}{{32}}\left[ {\frac{{{{\left( {{R_{300}} + {R_{003}} - {R_{030}} - {R_{333}}} \right) }^2} - {{\left( {{R_{121}} - {R_{211}} - {R_{112}} - {R_{222}}} \right) }^2} - {{\left( {{R_{111}} + {R_{221}} + {R_{122}} - {R_{212}}} \right) }^2}}}{{{{\left( {\sqrt{\lambda _3^ + } + \sqrt{\lambda _3^ - } } \right) }^2}}}} \right] \\&\quad + \frac{1}{{32}}\left[ {\frac{{{{\left( {{R_{030}} - {R_{300}} + {R_{003}} - {R_{333}}} \right) }^2} - {{\left( {{R_{121}} - {R_{211}} + {R_{112}} + {R_{222}}} \right) }^2} - {{\left( {{R_{111}} + {R_{221}} - {R_{122}} + {R_{212}}} \right) }^2}}}{{{{\left( {\sqrt{\lambda _4^ + } + \sqrt{\lambda _4^ - } } \right) }^2}}}} \right] . \end{aligned}$$

After some long but feasible calculations, we get

$$\begin{aligned} {w_{12}}&= {w_{21}} = \frac{{2i\left( {{\rho _{18}}{\rho _{72}} - {\rho _{81}}{\rho _{27}}} \right) }}{{\left( {\sqrt{\lambda _1^ + } + \sqrt{\lambda _1^ - } } \right) \left( {\sqrt{\lambda _3^ + } + \sqrt{\lambda _3^ - } } \right) }}\nonumber \\&\quad + \frac{{2i\left( {{\rho _{36}}{\rho _{54}} - {\rho _{45}}{\rho _{63}}} \right) }}{{\left( {\sqrt{\lambda _2^ + } + \sqrt{\lambda _2^ - } } \right) \left( {\sqrt{\lambda _4^ + } + \sqrt{\lambda _4^ - } } \right) }}, \end{aligned}$$
(113)
$$\begin{aligned} {w_{11}}&= \left( {\sqrt{\lambda _1^ + } + \sqrt{\lambda _1^ - } } \right) \left( {\sqrt{\lambda _3^ + } + \sqrt{\lambda _3^ - } } \right) + \left( {\sqrt{\lambda _2^ + } + \sqrt{\lambda _2^ - } } \right) \left( {\sqrt{\lambda _4^ + } + \sqrt{\lambda _4^ - } } \right) \nonumber \\&\quad + \frac{{\left( {{\rho _{11}} - {\rho _{88}}} \right) \left( {{\rho _{22}} - {\rho _{77}}} \right) + 2\left( {{\rho _{18}}{\rho _{72}} + {\rho _{81}}{\rho _{27}}} \right) }}{{\left( {\sqrt{\lambda _1^ + } + \sqrt{\lambda _1^ - } } \right) \left( {\sqrt{\lambda _3^ + } + \sqrt{\lambda _3^ - } } \right) }} \nonumber \\&\quad + \frac{{\left( {{\rho _{44}} - {\rho _{55}}} \right) \left( {{\rho _{33}} - {\rho _{66}}} \right) + 2\left( {{\rho _{36}}{\rho _{54}} + {\rho _{45}}{\rho _{63}}} \right) }}{{\left( {\sqrt{\lambda _2^ + } + \sqrt{\lambda _2^ - } } \right) \left( {\sqrt{\lambda _4^ + } + \sqrt{\lambda _4^ - } } \right) }}, \end{aligned}$$
(114)
$$\begin{aligned} {w_{22}}&= \left( {\sqrt{\lambda _1^ + } + \sqrt{\lambda _1^ - } } \right) \left( {\sqrt{\lambda _3^ + } + \sqrt{\lambda _3^ - } } \right) + \left( {\sqrt{\lambda _2^ + } + \sqrt{\lambda _2^ - } } \right) \left( {\sqrt{\lambda _4^ + } + \sqrt{\lambda _4^ - } } \right) \nonumber \\&\quad + \frac{{\left( {{\rho _{11}} - {\rho _{88}}} \right) \left( {{\rho _{22}} - {\rho _{77}}} \right) - 2\left( {{\rho _{18}}{\rho _{72}} + {\rho _{81}}{\rho _{27}}} \right) }}{{\left( {\sqrt{\lambda _1^ + } + \sqrt{\lambda _1^ - } } \right) \left( {\sqrt{\lambda _3^ + } + \sqrt{\lambda _3^ - } } \right) }} \nonumber \\&\quad + \frac{{\left( {{\rho _{44}} - {\rho _{55}}} \right) \left( {{\rho _{33}} - {\rho _{66}}} \right) - 2\left( {{\rho _{36}}{\rho _{54}} + {\rho _{45}}{\rho _{63}}} \right) }}{{\left( {\sqrt{\lambda _2^ + } + \sqrt{\lambda _2^ - } } \right) \left( {\sqrt{\lambda _4^ + } + \sqrt{\lambda _4^ - } } \right) }}, \end{aligned}$$
(115)
$$\begin{aligned} {w_{33}}&= \frac{1}{2}\left( {1 + 2\sum \limits _{i = 1}^4 {\sqrt{{d_i}} } } \right) + \frac{{{{\left( {2{\rho _{11}} + {\rho _{66}} - {\rho _{88}} - {\rho _{77}} - {\rho _{55}}} \right) }^2} - 16{\rho _{18}}{\rho _{81}}}}{{8{{\left( {\sqrt{\lambda _1^ + } + \sqrt{\lambda _1^ - } } \right) }^2}}}\nonumber \\&\quad + \frac{{{{\left( {{\rho _{33}} - {\rho _{66}}} \right) }^2} - 4{\rho _{36}}{\rho _{63}}}}{{2{{\left( {\sqrt{\lambda _4^ + } + \sqrt{\lambda _4^ - } } \right) }^2}}} \nonumber \\&\quad + \frac{{{{\left( {{\rho _{44}} - {\rho _{55}}} \right) }^2} + {{\left( {{\rho _{63}} - {\rho _{36}}} \right) }^2} - {{\left( {{\rho _{45}} + {\rho _{54}}} \right) }^2}}}{{2{{\left( {\sqrt{\lambda _2^ + } + \sqrt{\lambda _2^ - } } \right) }^2}}} \nonumber \\&\quad + \frac{{{{\left( {{\rho _{22}} - {\rho _{77}}} \right) }^2} - 4{\rho _{27}}{\rho _{72}}}}{{2{{\left( {\sqrt{\lambda _3^ + } + \sqrt{\lambda _3^ - } } \right) }^2}}}. \end{aligned}$$
(116)

with \(\lambda ^{\pm } (i=1,2, 3, 4)\) are the eigenvalues of the density matrix \(\rho _{123}\) (5).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slaoui, A., Daoud, M. & Ahl Laamara, R. The dynamic behaviors of local quantum uncertainty for three-qubit X states under decoherence channels. Quantum Inf Process 18, 250 (2019). https://doi.org/10.1007/s11128-019-2363-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2363-x

Keywords

Navigation