Skip to main content
Log in

A general method for selecting quantum channel for bidirectional controlled state teleportation and other schemes of controlled quantum communication

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently, a large number of protocols for bidirectional controlled state teleportation (BCST) have been proposed using n-qubit entangled states (\(n\in \{5,6,7\}\)) as quantum channel. Here, we propose a general method of selecting multiqubit \((n>4)\) quantum channels suitable for BCST and show that all the channels used in the existing protocols of BCST can be obtained using the proposed method. Further, it is shown that the quantum channels used in the existing protocols of BCST form only a negligibly small subset of the set of all the quantum channels that can be constructed using the proposed method to implement BCST. It is also noted that all these quantum channels are also suitable for controlled bidirectional remote state preparation. Following the same logic, methods for selecting quantum channels for other controlled quantum communication tasks, such as controlled bidirectional joint remote state preparation and controlled quantum dialogue, are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. If we choose all the elements from the \(i{\hbox {th}}\) row (\(j{\hbox {th}}\) column) of S, then the desired quantum channel of the form (3) will become separable, and Charlie will lose control in one direction of the BST. Thus, the scheme will not remain BCST.

  2. This condition ensures the required bijective mapping between Charlie’s measurement outcome and the entangled states shared by Alice and Bob. In the absence of this unique mapping, the receivers will not be able to decide which unitary operation is to be applied to achieve teleportation.

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  3. Pathak, A., Banerjee, A.: Efficient quantum circuits for perfect and controlled teleportation of n-qubit non-maximally entangled states of generalized Bell-type. Int. J. Quantum Inf. 9, 389 (2011)

    Article  MATH  Google Scholar 

  4. Hillery, M., Buzek, V., Bertaiume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  5. Wang, X.W., Xiac, L.-X., Wangd, Z.-Y., Zhanga, D.-Y.: Hierarchical quantum-information splitting. Opt. Commun. 283, 1196 (2010)

    Article  ADS  Google Scholar 

  6. Shukla, C., Pathak, A.: Hierarchical quantum communication. Phys. Lett. A 377, 1337 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  8. Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

  9. Huelga, S.F., Vaccaro, J.A., Chefles, A., Plenio, M.B.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63, 042303 (2001)

    Article  ADS  Google Scholar 

  10. Xia, Y., Fan, L.L., Hao, S.Y., He, J., Song, J., Wei, R.S., Huang, L.Q.: Efficient nonlocal entangled state distribution over the collective-noise channel. Quantum. Inf. Process. 12, 3553 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Xia, Y., Song, J., Song, H.S.: Re-examining generalized teleportation protocol. Opt. Commun. 279, 395 (2007)

    Article  ADS  Google Scholar 

  12. Rigolin, G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A 71, 032303 (2005)

    Article  ADS  Google Scholar 

  13. Pati, A.K., Agrawal, P.: Probabilistic teleportation of a qudit. Phys. Lett. A 371, 185 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Zhang, Z., Liu, Y., Wang, D.: Perfect teleportation of arbitrary n-qudit states using different quantum channels. Phys. Lett. A 372, 28 (2007)

    Article  ADS  MATH  Google Scholar 

  15. Xia, Y., Song, J., Lu, P.M., Song, H.S.: Teleportation of an N-photon Greenberger–Horne–Zeilinger (GHZ) polarization-entangled state using linear optical elements. JOSA B 27, A1 (2010)

    Article  ADS  Google Scholar 

  16. Xia, Y., Song, J., Song, H.S., Wang, B.Y.: Generalized teleportation of a d-level N-particle GHZ state with one pair of entangled particles as the quantum channel. Int. J. Theor. Phys. 47, 2835 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, Y.L., Wang, Y.N., Xiao, X.R., Jing, L., Mu, L.Z., Korepin, V.E., Fan, H.: Quantum network teleportation for quantum information distribution and concentration. Phys. Rev. A 87, 022302 (2013)

    Article  ADS  Google Scholar 

  18. Brassard, G., Braunstein, S.L., Cleve, R.: Teleportation as a quantum computation. Phys. D: Nonlinear Phenom. 120, 43 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)

    Article  ADS  Google Scholar 

  20. Yan, F.L., Zhang, X.Q.: A scheme for secure direct communication using EPR pairs and teleportation. Eur. Phys. J. B-Condens. Matt. Complex Syst. 41, 75 (2004)

    Article  Google Scholar 

  21. Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: teleportation of angles. Phys. Rev. A 65, 042316 (2002)

    Article  ADS  Google Scholar 

  22. Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quant. Inf. Process. 14, 3441 (2015)

  23. Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-qubit states: a generalized view. Int. J. Theor. Phys. 52, 3790 (2013)

    Article  MathSciNet  Google Scholar 

  24. Zha, X.-W., Zou, Z.-C., Qi, J.-X., Song, H.-Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52, 1740 (2013)

    Article  MathSciNet  Google Scholar 

  25. Zha, X.-W., Song, H.-Y., Ma, G.-L.: Bidirectional swapping quantum controlled teleportation based on maximally entangled five-qubit state. quant-ph/1006.0052, (2010)

  26. Li, Y.-H., Nie, L-p: Bidirectional controlled teleportation by using a five-qubit composite GHZ-Bell state. Int. J. Theor. Phys. 52, 1630 (2013)

    Article  MathSciNet  Google Scholar 

  27. Li, Y-h, Li, X-l, Sang, M-h, Nie, Y-y, Wang, Z-s: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12, 3835 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Duan, Y.-J., Zha, X.-W.: Bidirectional quantum controlled teleportation via a six-qubit entangled state. Int. J. Theor. Phys. 53, 3780 (2014)

    Article  MATH  Google Scholar 

  29. Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. J. Theor. Phys. 54, 269 (2014)

    Article  Google Scholar 

  30. An, Y.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theor. Phys. 52, 3870 (2013)

    Article  MATH  Google Scholar 

  31. Duan, Y.-J., Zha, X.-W., Sun, X.-M., Xia, J.-F.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state. Int. J. Theor. Phys. 53, 2697 (2014)

    Article  MATH  Google Scholar 

  32. Deng, F.-G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  33. Yadav, P., Srikanth, R., Pathak, A.: Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique. Quantum Inf. Process. 13, 2731 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: Various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14, 2599 (2015)

  35. Cao, T.B., An, N.B.: Deterministic controlled bidirectional remote state preparation. Adv. Nat. Sci.: Nanosci. Nanotechnol. 5, 015003 (2014)

    ADS  Google Scholar 

  36. Dong, Li, Xiu, X.-M., Gao, Y.-J., Chi, F.: A controlled quantum dialogue protocol in the network using entanglement swapping. Opt. Commun. 281, 6135 (2008)

    Article  ADS  Google Scholar 

  37. Xia, Y., Fu, C.-B., Zhang, S., Hong, S.-K., Yeon, K.-H., Um, C.-I.: Quantum dialogue by using the GHZ state. J. Korean Phys. Soc. 48, 24 (2006)

    Google Scholar 

  38. Hassanpour, S., Houshmand, M.: Efficient controlled quantum secure direct communication based on GHZ-like states. Quantum Inf. Process. 14, 739 (2015)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Srinatha, N., Omkar, S., Srikanth, R., Banerjee, S., Pathak, A.: The quantum cryptographic switch. Quantum. Inf. Process. 13, 59 (2014)

    Article  ADS  Google Scholar 

  40. An, N.B.: Quantum dialogue. Phys. Lett. A 328, 6 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A 377, 518 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  42. Lu, C.-Y., Zhou, X.-Q., Gühne, O., Gao, W.-B., Zhang, J., Yuan, Z.-S., Goebel, A., Yang, T., Pan, J.-W.: Experimental entanglement of six photons in graph states. Nat. Phys. 3, 91 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

AP and KT thank Department of Science and Technology (DST), India, for support provided through the DST project No. SR/S2/LOP-0012/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Pathak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thapliyal, K., Verma, A. & Pathak, A. A general method for selecting quantum channel for bidirectional controlled state teleportation and other schemes of controlled quantum communication. Quantum Inf Process 14, 4601–4614 (2015). https://doi.org/10.1007/s11128-015-1124-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1124-8

Keywords

Navigation