Skip to main content
Log in

Critical angle refractometry with optically isotropic attenuating media

  • Regular Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on a refractometry method for determining the complex refractive index of isotropic attenuating media, which relies on the measurement of the two critical angles at the s and p polarization states. Real and imaginary indices are retrieved by numerically solving a well-posed system of algebraic equations. Data regression is avoided and accurately calibrated reflectance values become superfluous. Monte Carlo simulations confirm that the method’s relative error is proportional to the error in locating the critical-angles, which can be made sufficiently small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Several decades ago, Azzam [27] proposed a complementary approach, which requires as input the values of reflectance at s and p polarization states, at any given angle of incidence. Thus, Azzam’s method does not spare the need for accurate calibration.

  2. This range of critical-angle measurement error (\(0.001^{\circ } \rightarrow 0.005^{\circ }\)) is commonly assumed to be reasonable in literature [28]. This assumption postulates that critical-angle error is limited by the minimum incremental motion of the rotary table and remains practically unaffected by the divergence angle of the laser beam, which is typically much larger [29, 30]. Other primary sources of error, such as temperature fluctuations or noise in the detection electronics, are also incorporated in the assumed range.

References

  1. U. Rivera-Ortega, C.R. Hernández-Gómez, G. Vega-Torres, M.E. Lopez-Medina, Simple apparatus to calculate the refractive index of liquids based on Snell’s law. Measurement 134, 658 (2019)

    Article  ADS  Google Scholar 

  2. J.R. Castrejón-Pita, A. Morales, R. Castrejón-García, Critical angle laser refractometer. Rev. Sci. Instrum. 77(3), 035101 (2006)

    Article  ADS  Google Scholar 

  3. K.H. Chen, Y.H. Wang, J.H. Chen, C.H. Lin, Full-field refractive index measurement using absolute-phase total internal reflection heterodyne interferometry. Appl. Phys. B 126(6), 109 (2020)

    Article  ADS  Google Scholar 

  4. K. Moutzouris, M. Papamichael, S.C. Betsis, I. Stavrakas, G. Hloupis, D. Triantis, Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared. Appl. Phys. B 116(3), 617 (2013)

    Article  ADS  Google Scholar 

  5. K. Moutzouris, G. Hloupis, I. Stavrakas, D. Triantis, M.H. Chou, Temperature-dependent visible to near-infrared optical properties of 8 mol% mg-doped lithium tantalate. Opt. Mater. Express 1(3), 458 (2011)

    Article  ADS  Google Scholar 

  6. D.L. Zhang, B. Chen, L. Qi, P.R. Hua, Y.M. Cui, D.Y. Yu, E.Y.B. Pun, Influence of li-rich vapor transport equilibration on surface refractive index and mg concentration of MgO (5 mol%)-doped LiNbO3 crystal. Appl. Phys. B 104(1), 151 (2011)

    Article  ADS  Google Scholar 

  7. P. Giannios, K.G. Toutouzas, M. Matiatou, K. Stasinos, M.M. Konstadoulakis, G.C. Zografos, K. Moutzouris, Visible to near-infrared refractive properties of freshly-excised human-liver tissues: marking hepatic malignancies. Sci. Rep. (2016). https://doi.org/10.1038/srep27910

    Article  Google Scholar 

  8. P. Giannios, S. Koutsoumpos, K.G. Toutouzas, M. Matiatou, G.C. Zografos, K. Moutzouris, Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared. J. Biophotonics 10(2), 303 (2016)

    Article  Google Scholar 

  9. M. Matiatou, P. Giannios, S. Koutsoumpos, K.G. Toutouzas, G.C. Zografos, K. Moutzouris, Data on the refractive index of freshly-excised human tissues in the visible and near-infrared spectral range. Results Phys. 22, 103833 (2021)

    Article  Google Scholar 

  10. J. Judek, K. Wilczyński, J.K. Piotrowski, Measurements of optical properties of liquids in a quartz cuvette: rigorous model, uncertainty analysis and comparison with popular approximations. Measurement 174, 109069 (2021)

    Article  Google Scholar 

  11. M. David, N. Halevi, E. Hirshtal, A. Peretz, A. Raviv, F. Pracca, Intra-abdominal hypertension assessment based on near infra-red reflectometry: new model and low-cost device. Measurement 154, 107456 (2020)

    Article  Google Scholar 

  12. G.H. Meeten, A.N. North, F.M. Willmouth, Errors in critical-angle measurement of refractive index of optically absorbing materials. J. Phys. E Sci. Instrum. 17(8), 642 (1984)

    Article  ADS  Google Scholar 

  13. G. Morales-Luna, A. García-Valenzuela, Viability and fundamental limits of critical-angle refractometry of turbid colloids. Meas. Sci. Technol. 28(12), 125203 (2017)

    Article  ADS  Google Scholar 

  14. H. Zeng, J. Wang, Q. Ye, Z. Deng, J. Mei, W. Zhou, C. Zhang, J. Tian, Study on the refractive index matching effect of ultrasound on optical clearing of bio-tissues based on the derivative total reflection method. Biomed. Opt. Express 5(10), 3482 (2014)

    Article  Google Scholar 

  15. T.Q. Sun, Q. Ye, X.W. Wang, J. Wang, Z.C. Deng, J.C. Mei, W.Y. Zhou, C.P. Zhang, J.G. Tian, Scanning focused refractive-index microscopy. Sci. Rep. (2014). https://doi.org/10.1038/srep05647

    Article  Google Scholar 

  16. H. Ding, J.Q. Lu, K.M. Jacobs, X.H. Hu, Determination of refractive indices of porcine skin tissues and intralipid at eight wavelengths between 325 and 1557 nm. J. Opt. Soc. Am. A 22(6), 1151 (2005)

    Article  ADS  Google Scholar 

  17. J. Lai, Z. Li, C. Wang, A. He, Experimental measurement of the refractive index of biological tissues by total internal reflection. Appl. Opt. 44(10), 1845 (2005)

    Article  ADS  Google Scholar 

  18. I. Niskanen, J. Räty, K.E. Peiponen, Complex refractive index of turbid liquids. Opt. Lett. 32(7), 862 (2007)

    Article  ADS  Google Scholar 

  19. W.R. Calhoun, H. Maeta, A. Combs, L.M. Bali, S. Bali, Measurement of the refractive index of highly turbid media. Opt. Lett. 35(8), 1224 (2010)

    Article  ADS  Google Scholar 

  20. J. Räty, P. Pääkkönen, K.E. Peiponen, Assessment of wavelength dependent complex refractive index of strongly light absorbing liquids. Opt. Express 20(3), 2835 (2012)

    Article  ADS  Google Scholar 

  21. J. Sun, J. Wang, Y. Liu, Q. Ye, H. Zeng, W. Zhou, J. Mei, C. Zhang, J. Tian, Effect of the gradient of complex refractive index at boundary of turbid media on total internal reflection. Opt. Express 23(6), 7320 (2015)

    Article  ADS  Google Scholar 

  22. T.Q. Sun, Q. Ye, S.K. Liu, X.W. Wang, J. Wang, Z.C. Deng, J.C. Mei, W.Y. Zhou, C.P. Zhang, J.G. Tian, Measurement of complex refractive index of turbid media by scanning focused refractive index. Opt. Lett. 41(16), 3767 (2016)

    Article  ADS  Google Scholar 

  23. K.G. Goyal, M.L. Dong, V.M. Nguemaha, B.W. Worth, P.T. Judge, W.R. Calhoun, L.M. Bali, S. Bali, Empirical model of total internal reflection from highly turbid media. Opt. Lett. 38(22), 4888 (2013)

    Article  ADS  Google Scholar 

  24. W. Guo, M. Xia, W. Li, J. Dai, X. Zhang, K. Yang, A local curve-fitting method for the complex refractive index measurement of turbid media. Meas. Sci. Technol. 23(4), 047001 (2012)

    Article  ADS  Google Scholar 

  25. S. Koutsoumpos, P. Giannios, I. Stavrakas, K. Moutzouris, The derivative method of critical-angle refractometry for attenuating media. J. Opt. 22(7), 075601 (2020)

    Article  ADS  Google Scholar 

  26. S. Koutsoumpos, P. Giannios, K. Moutzouris, Extended derivative method of critical-angle refractometry for attenuating media: error analysis. Meas. Sci. Technol. 32(10), 105007 (2021)

    Article  ADS  Google Scholar 

  27. R.M.A. Azzam, Direct relation between Fresnel’s interface reflection coefficients for the parallel and perpendicular polarizations. J. Opt. Soc. Am. 69(7), 1007 (1979)

    Article  ADS  Google Scholar 

  28. M.C. Pena-Gomar, Measuring and sensing a complex refractive index by laser reflection near the critical angle. Opt. Eng. 41(7), 1704 (2002)

    Article  ADS  Google Scholar 

  29. Q. Ye, J. Wang, Z.C. Deng, W.Y. Zhou, C.P. Zhang, J.G. Tian, Measurement of the complex refractive index of tissue-mimicking phantoms and biotissue by extended differential total reflection method. J. Biomed. Opt. 16(9), 097001 (2011)

    Article  ADS  Google Scholar 

  30. Q.W. Song, C.Y. Ku, C. Zhang, R. Michalak, Modified critical angle method for measuring the refractive index of bio-optical materials and its application to bacteriorhodopsin. J. Opt. Soc. Am. B 12(5), 797 (1995)

    Article  ADS  Google Scholar 

  31. A. García-Valenzuela, R.G. Barrera, C. Sánchez-Pérez, A. Reyes-Coronado, E.R. Méndez, Coherent reflection of light from a turbid suspension of particles in an internal-reflection configuration: theory versus experiment. Opt. Express 13(18), 6723 (2005)

    Article  ADS  Google Scholar 

  32. G. Morales-Luna, H. Contreras-Tello, A. García-Valenzuela, R.G. Barrera, Experimental test of reflectivity formulas for turbid colloids: beyond the Fresnel reflection amplitudes. J. Phys. Chem. B 120(3), 583 (2016)

    Article  Google Scholar 

  33. J.M. Schmitt, G. Kumar, Turbulent nature of refractive-index variations in biological tissue. Opt. Lett. 21(16), 1310 (1996)

    Article  ADS  Google Scholar 

  34. S. Kedenburg, M. Vieweg, T. Gissibl, H. Giessen, Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Opt. Mater. Express 2(11), 1588 (2012)

    Article  ADS  Google Scholar 

  35. E. Sani, A. DellOro, Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared. Opt. Mater. 60, 137 (2016)

    Article  ADS  Google Scholar 

  36. D.J. Rowe, D. Smith, J.S. Wilkinson, Complex refractive index spectra of whole blood and aqueous solutions of anticoagulants, analgesics and buffers in the mid-infrared. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-07842-0

    Article  Google Scholar 

  37. K. Lee, Y. Kim, J. Jung, H. Ihee, Y. Park, Measurements of complex refractive index change of photoactive yellow protein over a wide wavelength range using hyperspectral quantitative phase imaging. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-21403-z

    Article  Google Scholar 

  38. M.L. Dong, K.G. Goyal, B.W. Worth, S.S. Makkar, W.R. Calhoun, L.M. Bali, S. Bali, Accurate in situ measurement of complex refractive index and particle size in intralipid emulsions. J. Biomed. Opt. 18(8), 087003 (2013)

    Article  ADS  Google Scholar 

  39. A. Jääskeläinen, K.E. Peiponen, J. Räty, On reflectometric measurement of a refractive index of milk. J. Dairy Sci. 84(1), 38 (2001)

    Article  Google Scholar 

  40. K.E. Peiponen, V. Kontturi, I. Niskanen, M. Juuti, J. Räty, H. Koivula, M. Toivakka, On estimation of complex refractive index and colour of dry black and cyan offset inks by a multi-function spectrophotometer. Meas. Sci. Technol. 19(11), 115601 (2008)

    Article  ADS  Google Scholar 

  41. C.J.M. Jones, P.R.T. Munro, Stability of gel wax based optical scattering phantoms. Biomed. Opt. Express 9(8), 3495 (2018)

    Article  Google Scholar 

  42. Q. Lai, Y. Xie, M. Wang, C. Wang, K. Sun, J. Tan, The complex refractive index of crude oils determined by the combined Brewster-transmission method. Infrared Phys. Technol. 111, 103515 (2020)

    Article  Google Scholar 

  43. M.N. Polyanskiy. Refractive index database. urlhttps://www.refractiveindex.info. Accessed 11 May

  44. C. Schinke, P.C. Peest, J. Schmidt, R. Brendel, K. Bothe, M.R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H.T. Nguyen, D. MacDonald, Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon. AIP Adv. 5(6), 067168 (2015)

    Article  ADS  Google Scholar 

  45. T. Amotchkina, M. Trubetskov, D. Hahner, V. Pervak, Characterization of e-beam evaporated ge, YbF3, ZnS, and LaF3 thin films for laser-oriented coatings. Appl. Opt. 59(5), A40 (2019)

    Article  Google Scholar 

  46. K. Papatryfonos, T. Angelova, A. Brimont, B. Reid, S. Guldin, P.R. Smith, M. Tang, K. Li, A.J. Seeds, H. Liu, D.R. Selviah, Refractive indices of MBE-grown AlxGa(1–x)as ternary alloys in the transparent wavelength region. AIP Adv. 11(2), 025327 (2021)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Moutzouris.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

All algebraic expressions presented in Sect. 2 appear in Ref. [25] with the exception Eq. 6b, which is presented here for the first time and derives from the derivative condition for the p-polarization [25]

$$\begin{aligned} \rho _p'' = \frac{2}{1+\rho _p}(\rho _p')^2. \end{aligned}$$
(A.1)

Differentiation of \(\rho _p\) is with respect to the angle of incidence on the reflectance equation. The derivatives of \(\alpha _p\) and \(\gamma _p\) with respect to \(\theta\) are needed and the recursive relations

$$\begin{aligned} \alpha _p' = -2t_p(1-\alpha _p), \quad \gamma _p' = 2t_p\left( \gamma _p - \frac{\alpha _p}{\gamma _p}\right) \end{aligned}$$
(A.2)

hold [25]. Furthermore, it is \(t_p' = 1+t_p^2\). The derivatives of \(\rho _p\) calculated by differentiation of the reflectance equation are substituted in the derivative condition and the resulting first order equation for \(\sqrt{\alpha _p+\gamma _p}\) is solved, while simplifying along the way, to obtain Eq. 6b.

It is finally worth noting that computation speed seems to improve when Eq. 6a is replaced by its solution for \(\sqrt{\alpha _p+\gamma _p}\), according to the perfectly equivalent form:

$$\begin{aligned}&2\sqrt{2}\, t_p^2 \sqrt{\alpha _p+\gamma _p} = \rho _p (1+t_p^2)(t_p^2+\gamma _p) \nonumber \\&\quad -\sqrt{\rho _p^2 (1+t_p^2)^2 (t_p^2+\gamma _p)^2- 4t_p^2(1+\gamma _p)(t_p^4+\gamma _p)}, \end{aligned}$$
(A.3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koutsoumpos, S., Giannios, P. & Moutzouris, K. Critical angle refractometry with optically isotropic attenuating media. Appl. Phys. B 128, 91 (2022). https://doi.org/10.1007/s00340-022-07810-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07810-1

Navigation