Skip to main content
Log in

A simple sensor for simultaneous measurements of OH, H2O, and temperature in combustion environments using a single tunable diode laser near 1.477 μm

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Information about quantitative OH concentrations and temperature during the combustion process is important for the development of combustion kinetics and understanding of combustion chemistry. In this work, we perform simultaneous measurements of the averaged temperature, H2O concentration, and OH concentration using a single telecommunication-fiber-coupled tunable diode laser near 1.477 μm. A 1f-normalized wavelength modulation spectroscopy with a second-harmonic (2f) detection scheme is employed to improve the sensitivity and remove the influence of the transmission variation. According to the validation experiments performed in a well-controlled heated static cell and the combustion exhaust on a burner, the uncertainties for the measurements of OH concentration, H2O concentration, and temperature are 6.61%, 3.35%, and 3.77%, respectively. The measured vertical profiles for the temperatures, H2O concentrations, and OH concentrations above the burner illustrate the potential of the system in a variety of combustion applications. This work is beneficial to the development of a low-cost sensor for combustion diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Hofzumahaus, F. Rohrer, K. Lu, B. Bohn, T. Brauers, C.C. Chang, H. Fuchs, F. Holland, K. Kita, Y. Kondo, X. Li, S. Lou, M. Shao, L. Zeng, A. Wahner, Y. Zhang, Amplified trace gas removal in the troposphere. Science 324(5935), 1702–1704 (2009)

    Article  ADS  Google Scholar 

  2. L. Jaeglé, D.J. Jacob, W.H. Brune, I. Faloona, D. Tan, B.G. Heikes, Y. Kondo, G.W. Sachse, B. Anderson, G.L. Gregory, H.B. Singh, R. Pueschel, G. Ferry, D.R. Blake, R.E. Shetter, Photochemistry of HOx in the upper troposphere at northern midlatitudes. J. Geophys. Res. Atmos. 105(D3), 3877–3892 (2000)

    Article  ADS  Google Scholar 

  3. R. Atkinson, Kinetics of the gas-phase reactions of OH radicals with alkanes and cycloalkanes. Atmos. Chem. Phys. 3(6), 2233–2307 (2003)

    Article  ADS  Google Scholar 

  4. N. Hansen, J.A. Miller, S.J. Klippenstein, P.R. Westmoreland, K. Kohse-Höinghaus, Exploring formation pathways of aromatic compounds in laboratory-based model flames of aliphatic fuels. Combust. Explo. Shock 48(5), 508–515 (2012)

    Article  Google Scholar 

  5. M.J. Dyer, D.R. Crosley, Two-dimensional imaging of OH laser induced fluorescence in a flame. Opt. Lett. 7, 382–384 (1982)

    Article  ADS  Google Scholar 

  6. J.M. Seitzman, R.K. Hanson, P.A. DeBarber, C.F. Hess, Application of quantitative two line OH planar laser-induced fluorescence for temporally resolved planar thermometry in reacting flows. Appl. Opt. 33, 4000–4012 (1994)

    Article  ADS  Google Scholar 

  7. C.F. Kaminski, J. Hult, M. Alden, High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame. Appl. Phys. B. 68, 757–760 (1999)

    Article  ADS  Google Scholar 

  8. B.B. Dally, A.N. Karpetis, R.S. Barlow, Structure of turbulent non-premixed jet flames in a diluted hot coflow. Proc. Combust. Inst. 29, 1147–1154 (2002)

    Article  Google Scholar 

  9. S. Singh, M.P. Musculus, R.D. Reitz, Mixing and flame structures inferred from OH-PLIF for conventional and low-temperature diesel engine combustion. Combust. Flame. 156, 1898–1908 (2009)

    Article  Google Scholar 

  10. A.M. Steinberg, I. Boxx, C.M. Arndt, J.H. Frank, W. Meier, Experimental study of flame-hole reignition mechanisms in a turbulent non-premixed jet flame using sustained multi-kHz PIV and crossed-plane OH PLIF. Proc. Combust. Inst. 33(1), 1663–1672 (2011)

    Article  Google Scholar 

  11. J.P. Maillard, J. Chauville, A.W. Mantz, High-resolution emission spectrum of OH in an oxyacetylene flame from 3.7 to 0.9 μm. J. Mol. Spectrosc. 63, 120–141 (1976)

    Article  ADS  Google Scholar 

  12. J. Kojima, Y. Ikeda, T. Nakajima, Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames. Proc. Combust. Inst. 28, 1757–1764 (2000)

    Article  Google Scholar 

  13. B. Higgins, M.Q. McQuay, F. Lacas, J.C. Rolon, N. Darabiha, S. Candel, Systematic measurements of OH chemiluminescence for fuel-lean, high-pressure, premixed, laminar flames. Fuel 80, 67–74 (2001)

    Article  Google Scholar 

  14. M. De Leo, A. Saveliev, L.A. Kennedy, S.A. Zelepouga, OH and CH luminescence in opposed flow methane oxy-flames. Combust. Flame. 149, 435–447 (2007)

    Article  Google Scholar 

  15. R. Stützer, M. Oschwald, The hyperfine structure of the OH* emission spectrum and its benefits for combustion analysis, in proceedings of the 8th european conference for aeronautics and space sciences. 8th european conference for aeronautics and space sciences EUCASS (2019).

  16. K.C. Lück, F.J. Müller, Simultaneous determination of temperature and OH-concentration in flames using high-resolution laser-absorption spectroscopy. J. Quant. Spectrosc. Radiat. Transf. 17(3), 403–409 (1977)

    Article  ADS  Google Scholar 

  17. R.K. Hanson, S. Salimian, G. Kychakoff, R.A. Booman, Shock tube absorption measurements of OH using a remotely located dye laser. Appl. Opt. 22, 641–643 (1983)

    Article  ADS  Google Scholar 

  18. S.S. Vasu, D.F. Davidson, Z. Hong, V. Vasudevan, R.K. Hanson, n-Dodecane oxidation at high-pressures: measurements of ignition delay times and OH concentration time-histories. Proc. Combust. Inst. 32, 173–180 (2009)

    Article  Google Scholar 

  19. S. Wang, D.F. Davidson, R.K. Hanson, Rate constants of long, branched, and unsaturated aldehydes with OH at elevated temperatures. Proc. Combust. Inst. 36, 151–160 (2017)

    Article  Google Scholar 

  20. S. Wang, R.K. Hanson, “High-sensitivity 3086-nm laser absorption diagnostic optimized for OH measurement in shock tube combustion studies. Appl. Phys. B 124(3), 37 (2018)

    Article  ADS  Google Scholar 

  21. X. Yang, Z. Peng, Y. Ding, Y. Du, Temperature and OH concentration measurements by ultraviolet broadband absorption of OH(X) in laminar methane/air premixed flames. Fuel 288, 119666 (2021)

    Article  Google Scholar 

  22. R.F. Curl, F.K. Tittel, Tunable infrared laser spectroscopy. Annu. Rep. Prog. Chem Sect. C: Phys. Chem. 98, 219–272 (2002)

    Article  Google Scholar 

  23. M.G. Allen, Diode laser absorption sensors for gas-dynamic and combustion flows. Measur. Sci. Technol. 9(4), 545–562 (1998)

    Article  ADS  Google Scholar 

  24. V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant. Proc. Combust. Inst. 28, 423–430 (2000)

    Article  Google Scholar 

  25. B.L. Upschulte, D.M. Sonnenfroh, M.G. Allen, Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser. Appl. Opt. 38(9), 1506–1512 (1999)

    Article  ADS  Google Scholar 

  26. T. Aizawa, T. Kamimoto, T. Tamaru, Measurements of OH radical concentration in combustion environments by wavelength-modulation spectroscopy with a 1.55-µm distributed-feedback diode laser. Appl. Opt. 38(9), 1733–1741 (1999)

    Article  ADS  Google Scholar 

  27. T. Aizawa, Diode-laser wavelength-modulation absorption spectroscopy for quantitative in situ measurements of temperature and OH radical concentration in combustion gases. Appl. Opt. 40(27), 4894–4903 (2001)

    Article  ADS  Google Scholar 

  28. R. Peeters, G. Berden, G. Meijer, Near-infrared cavity enhanced absorption spectroscopy of hot water and OH in an oven and in flames. Appl. Phys. B 73(1), 65–70 (2001)

    Article  ADS  Google Scholar 

  29. L. Rutkowski, A.C. Johansson, D. Valiev, A. Khodabakhsh, A. Tkacz, F.M. Schmidt, A. Foltynowicz, Detection of OH in an atmospheric flame at 1.5 um using optical frequency comb spectroscopy. Photonics Lett. Pol. 8, 110–112 (2016)

    Article  Google Scholar 

  30. T.R.S. Hayden, N. Malarich, D.J. Petrykowski, P.M. Siddharth, J.D. Christopher, C. Lapointe, N.T. Wimer, P.E. Hamlington, G.B. Rieker, OH radical measurements in combustion environments using wavelength modulation spectroscopy and dual-frequency comb spectroscopy near 1491 nm. Appl. Phys. B 125, 226 (2019)

    Article  ADS  Google Scholar 

  31. T.R.S. Hayden, D.J. Petrykowski, A. Sanchez, S.P. Nigam, C. Lapointe, J.D. Christopher, N.T. Wimer, A. Upadhye, M. Strobel, P.E. Hamlington, G.B. Rieker, Characterization of OH, H2O, and temperature profiles in industrial flame treatment systems interacting with polymer films. Proc. Combust. Inst. 37(2), 1571–1578 (2019)

    Article  Google Scholar 

  32. J.J. Scherer, D. Voelkel, D.J. Rakestraw, Infrared cavity ringdown laser absorption spectroscopy (IR-CRLAS) in low pressure flames. Appl. Phys. B 64, 699–705 (1997)

    Article  ADS  Google Scholar 

  33. J.J. Scherer, K.W. Aniolek, N.P. Cernanscky, D.J. Rakestraw, Determination of methyl radical concentrations in a methane/air flame by infrared cavity ringdown laser absorption spectroscopy. J. Chem. Phys. 107, 6196–6203 (1997)

    Article  ADS  Google Scholar 

  34. A. Farooq, J.B. Jeffries, R.K. Hanson, Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm. Appl. Phys. B 96, 161–173 (2009)

    Article  ADS  Google Scholar 

  35. T. Cai, G. Gao, M. Wang, G. Wang, Y. Liu, X. Gao, Simultaneous measurements of temperature and CO2 concentration employing diode laser absorption near 2.0 μm. Appl. Phys. B 118(3), 471–480 (2015)

    Article  ADS  Google Scholar 

  36. R. Cui, L. Dong, H. Wu, S. Li, L. Zhang, W. Ma, W. Yin, L. Xiao, S. Jia, F.K. Tittle, Highly sensitive and selective CO sensor using a 233 μm diode laser and wavelength modulation spectroscopy. Opt. Express 26(19), 24318–24328 (2018)

    Article  ADS  Google Scholar 

  37. P. Kluczynski, Å.M. Lindberg, O. Axner, Wavelength modulation diode laser absorption signals from doppler broadened absorption profiles. J. Quant. Spectrosc. Radiat. Transf. 83(3–4), 345–360 (2004)

    Article  ADS  Google Scholar 

  38. B.K. Alsberg, A.M. Woodward, M.K. Winson, J. Rowland, D.B. Kell, Wavelet denoising of infrared spectra. Analyst (Lond.) 122(7), 645–652 (1997)

    Article  ADS  Google Scholar 

  39. G.Z. Gao, T. Zhang, G. Zhang, X. Liu, T.D. Cai, Simultaneous and interference-free measurements of temperature and C2H4 concentration using a single tunable diode laser at 1.62 μm. Opt. Express 2(17), 887–904 (2019)

    Google Scholar 

  40. G. Zhang, G.Z. Gao, T. Zhang, X. Liu, C.D. Peng, T.D. Cai, Absorption spectroscopy of ethylene near 162 μm at high temperatures. J. Quant. Spectrosc. Radiat. Transf. 241, 106748 (2020)

    Article  Google Scholar 

Download references

Funding

Funding for this work comes from the National Natural Science Foundation of China (No. 61875079, No. 61805110, No. 61475068, and No. 11104237), Science and Technology Program of Jiangsu Province (No. BE2021634), and the Science and Technology Program of Xuzhou City (No. KC19202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingdong Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Gao, G. & Cai, T. A simple sensor for simultaneous measurements of OH, H2O, and temperature in combustion environments using a single tunable diode laser near 1.477 μm. Appl. Phys. B 127, 158 (2021). https://doi.org/10.1007/s00340-021-07710-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07710-w

Navigation