Skip to main content
Log in

Simultaneous measurements of temperature and CO2 concentration employing diode laser absorption near 2.0 μm

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Simultaneous measurements of gas temperature and CO2 concentration in combustion gases using an extended-wavelength diode laser sensor at 2.0 μm are reported. A CO2 transition pair located near 5,006.140 and 5,010.725 cm−1 is selected based on existing line-selection criteria. The gas temperature and CO2 concentration are inferred from the peak heights of the 1f-normalized WMS-2f signals. Some important factors (modulation depth, total pressure, and species concentration) influencing the performance of the sensor are discussed. Validation experiments performed in a heated static cell indicated that the sensor has accuracies of 1.21 and 2.98 % for temperature and CO2 concentration measurement. The demonstration in combustion gases produced by a burner illustrates the potential of the 1f-normalized WMS-2f sensor for combustion diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.F. Edwards, K.-Y. Teh, S.L. Miller. Development of low-energy-loss, high-efficiency chemical engines. Global Climate and Energy Project Technical Report (Stanford University, 2006)

  2. J.P. Besson, S. Schilt, E. Rochat, L. Thévenaz, Ammonia trance measurements at ppb level based on near-IR photoacoustic spectroscopy. Appl. Phys. B 85, 323–328 (2006)

    Article  ADS  Google Scholar 

  3. L. Joly, B. Parvitte, V. Zeninari, G. Durry, Development of a compact CO2 sensor open to the atmosphere and based on near-infrared laser technology at 2.68 μm. Appl. Phys. B 86, 743–748 (2007)

    Article  ADS  Google Scholar 

  4. I. Linnerud, P. Kaspersen, T. Jaeger, Gas monitoring in the process industry using diode laser spectroscopy. Appl. Phys. B 67, 297–305 (1998)

    Article  ADS  Google Scholar 

  5. X. Liu, J.B. Jeffries, R.K. Hanson, K.M. Hinckley, M.A. Woodmansee, Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature. Appl. Phys. B 82, 469–478 (2006)

    Article  ADS  Google Scholar 

  6. S. Kanoh, H. Kobayashi, K. Motoyoshi, Exhaled ethane: an in vivo biomarker of lipid peroxidation in interstitial lung diseases. Chest 128, 2387–2392 (2005)

    Article  Google Scholar 

  7. M.R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, F.K. Tittel, Recent advances of laser-spectroscopy based techniques for applications in breath analysis. J. Breath Res. 1, 014001 (2007)

    Article  ADS  Google Scholar 

  8. D. Richter, D.G. Lancaster, F.K. Tittle, Development of an automated diode-laser-based multicomponent gas sensor. Appl. Opt. 39, 4444–4450 (2000)

    Article  ADS  Google Scholar 

  9. J.A. Silver, D.J. Kane, P.S. Greenberg, Quantitative species measurements in microgravity flames with near-IR diode lasers. Appl. Opt. 34, 2787–2801 (1995)

    Article  ADS  Google Scholar 

  10. B.T. Fisher, A.R. Awtry, R.S. Sheinson, J.W. Fleming, Flow behavior impact on the suppression effectiveness of sub-10-lm water drops in propane/air co-flow non-premixed flames. Proc. Combust. Inst. 31, 2731–2739 (2007)

    Article  Google Scholar 

  11. M.G. Allen, Diode laser absorption sensors for gas-dynamic and combustion flows. Meas. Sci. Technol. 9, 545–562 (1998)

    Article  ADS  Google Scholar 

  12. S.T. Sanders, J.A. Baldwin, T.P. Jenkins, D.S. Baer, R.K. Hanson, Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines. Proc. Combust. Inst. 28, 587–594 (2000)

    Article  Google Scholar 

  13. D.M. Sonnenfroh, M.G. Allen, Observation of CO and CO2 absorption near 1.57 μm with an external-cavity diode laser. Appl. Opt. 36, 3298–3300 (1997)

    Article  ADS  Google Scholar 

  14. R.M. Mihalcea, D.S. Baer, R.K. Hanson, Diode-laser sensor for measurements of CO, CO2, and CH4 in combustion flows. Appl. Opt. 36, 8745–8752 (1997)

    Article  ADS  Google Scholar 

  15. R.M. Mihalcea, D.S. Baer, R.K. Hanson, Diode-laser absorption sensor for combustion emission measurements. Meas. Sci. Technol. 9, 327–338 (1998)

    Article  ADS  Google Scholar 

  16. Nanosystems and Technologies GmbH, http://www.nanoplus.com

  17. A. Farooq, J.B. Jeffries, R.K. Hanson, CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 μm. Appl. Phys. B 90, 619–628 (2008)

    Article  ADS  Google Scholar 

  18. A. Farooq, J.B. Jeffries, R.K. Hanson, Measurements of CO2 concentration and temperature at high pressures using 1f-normalized wavelength modulation spectroscopy with second harmonic detection near 2.7 μm. Appl. Opt. 48, 2740–2753 (2009)

    Article  Google Scholar 

  19. A. Farooq, J.B. Jeffries, R.K. Hanson, Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm. Appl. Phys. B 96, 161–173 (2009)

    Article  ADS  Google Scholar 

  20. R.M. Spearrin, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Fiber-coupled 2.7 μm laser absorption sensor for CO2 in harsh combustion environments. Meas. Sci. Technol. 24, 055107 (2013)

    Article  ADS  Google Scholar 

  21. M.E. Webber, S. Kim, S.T. Sanders, D.S. Baer, R.K. Hanson, Y. Ikeda, In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 μm. Appl. Opt. 40, 821–828 (2001)

    Article  ADS  Google Scholar 

  22. R.M. Mihalcea, D.S. Baer, R.K. Hanson, Diode-laser absorption measurements of CO2 near 2.0 μm at elevated temperatures. Appl. Opt. 37, 8341–8346 (1998)

    Article  ADS  Google Scholar 

  23. G.B. Rieker, J.B. Jeffries, R.K. Hanson, Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design. Appl. Phys. B 94, 51–63 (2009)

    Article  ADS  Google Scholar 

  24. L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.-M. Flaud, R.R. Gamache, J.J. Harrison, J.-M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, Vl.G Tyuterev, G. Wagner, The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013)

    Article  ADS  Google Scholar 

  25. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010)

    Article  ADS  Google Scholar 

  26. T.D. Cai, G.S. Wang, H. Jia, W.D. Chen, X.M. Gao, A sensor for measurements of temperature and water concentration using a single tunable diode laser near 1.4 μm. Sens. Actuators A 152(1), 5–12 (2009)

    Article  Google Scholar 

  27. H. Li, G.B. Rieker, X. Liu, J.B. Jeffries, R.K. Hanson, Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases. Appl. Opt. 45, 1052–1061 (2006)

    Article  ADS  Google Scholar 

  28. X. Zhou, X. Liu, J.B. Jeffries, R.K. Hanson, Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser. Meas. Sci. Technol. 14, 1459–1468 (2003)

    Article  ADS  Google Scholar 

  29. P. Kluczynski, O. Axner, Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals. Appl. Opt. 38, 5803–5815 (1999)

    Article  ADS  Google Scholar 

  30. S.R. Drayson, Rapid computation of the Voigt profile. J. Quant. Spectrosc. Radiat. Transfer 16, 611–614 (1976)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work is funded by the National Natural Science Foundation of China (No. 11104237, No. 61475068), the Open Research Fund of Key Laboratory of Atmospheric Composition and Optical Radiation, Chinese Academy of Sciences (No. 2012JJ04), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). We thank in particular Prof. Jow-Tsong Shy for the participation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingdong Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, T., Gao, G., Wang, M. et al. Simultaneous measurements of temperature and CO2 concentration employing diode laser absorption near 2.0 μm. Appl. Phys. B 118, 471–480 (2015). https://doi.org/10.1007/s00340-015-6015-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6015-2

Keywords

Navigation