Skip to main content
Log in

A brief overview of 8 m prototype facility of laser interferometer for Taiji pathfinder mission

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The 8 m laser interferometer prototype facility is currently being constructed at the Institute of Mechanics, Chinese Academy of Sciences in Beijing, China. It aims to perform laser interferometer experiments and pico-meter precision detection and calibration for Taiji pathfinder mission. The seismically isolated ground and passive vibration isolation are interconnected and the optical benches are stabilized by them, which can form two low-noise testbeds inside a 40 m3 ultra-high vacuum system. An on-ground laser interferometer demonstration used for satellite–satellite tracking will be constructed. In this article, the experimental facility and the employed methods will be described, and the technical details of subsystems will be covered in future papers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig. 5
Fig.6
Fig. 7
Fig.8
Fig.9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Nagano, T. Yoshino, H. Kunimori, M. Hosokawa, S. Kawamura, T. Sato, M. Ohkawa, Meas. Sci. Technol. 15, 2406 (2004)

    Article  ADS  Google Scholar 

  2. F. Acernese, M. Alshourbagy, P. Amico, F. Antonucci, S. Aoudia, K.G. Arun et al., Class. Quantum Grav. 25, 184001 (2008)

    Article  ADS  Google Scholar 

  3. D. Sigg (for the LIGO Scientific Collaboration), Class. Quantum Grav. 25, 114041 (2008)

    Article  ADS  Google Scholar 

  4. LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett. 116(6), 61102 (2016)

    Article  MathSciNet  Google Scholar 

  5. LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett. 116(24), 241103 (2016)

    Article  ADS  Google Scholar 

  6. LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett. 118(22), 221101 (2017)

    Article  ADS  Google Scholar 

  7. LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett. 119(14), 141101 (2017)

    Article  ADS  Google Scholar 

  8. F. Acernese, F. Antonucci, S. Aoudia et al., Astropart. Phys. 33(3), 182 (2010)

    Article  ADS  Google Scholar 

  9. M.G. Beker, M. Bloma, J.F.J. van den Brand, H.J. Bulten, E. Hennes, D.S. Rabeling, Phys. Procedia 37, 1389 (2012)

    Article  ADS  Google Scholar 

  10. B. Willke, P. Aufmuth, C. Aulbert et al., Class. Quantum Grav. 19(7), 1377 (2002)

    Article  ADS  Google Scholar 

  11. H. Grote, Class. Quantum Grav., 25(11), 114043 (2008)

    Article  ADS  Google Scholar 

  12. K. Somiya, Class. Quantum Grav., 29(12), 124007 (2011)

    Article  ADS  Google Scholar 

  13. Y. Sakakibara, T. Akutsu, D. Chen et al., Class. Quantum Grav. 31(22), (2014)

    Article  ADS  Google Scholar 

  14. S. Rowan, J. Hough, Living Rev. Relativ. 14(1), 5 (2011)

    Article  ADS  Google Scholar 

  15. J.R. Gair, M. Vallisneri, S.L. Larson, J.G. Baker, Living Rev. Relativ. 16(1), 1 (2013)

    Article  ADS  Google Scholar 

  16. S. Vitale, Gen. Relativ. Gravit. 46(5), 1730 (2014)

    Article  ADS  Google Scholar 

  17. W.R. Hu, Y.L. Wu, Natl. Sci. Rev. 4(5), 685 (2017)

    Article  Google Scholar 

  18. D. Cyranoski, Nature 531, 150 (2016)

    Article  ADS  Google Scholar 

  19. X. Gong, S. Xu, S. Bai, Z. Cao, G. Chen, Y. Chen, X. He, G. Heinzel, Y.K. Lau, C. Liu, J. Luo, Z. Luo, A.P. Paton, A. Ruediger, M. Shao, R. Spurzem, Y. Wang, P. Xu, H.C. Yeh, Y. Yuan, Z. Zhou, Class. Quantum Grav. 28, 094012 (2011)

    Article  ADS  Google Scholar 

  20. G. Jin, IOP Conf. Series: J. Phys.: Conf. Ser. 840(1), 012009 (2017)

    Article  Google Scholar 

  21. J. Luo, L.S. Chen, H.Z. Duan, Y.G. Gong, S.C. Hu, J.H. Ji, Q. Liu, J.W. Mei, V. Milyukov, M. Sazhin, C.G. Shao, V.T. Toth, H.B. Tu, Y. Wang, Y. Wang, H.C. Yeh, M.S. Zhan, Y.H. Zhang, V. Zharov, Z.B. Zhou, Class. Quantum Grav. 33(3), 035010 (2016)

    Article  ADS  Google Scholar 

  22. H.S. Liu, Z.R. Luo, G. Jin, Microgr. Sci. Technol. 30(6), 775 (2018)

    Article  ADS  Google Scholar 

  23. Z.R. Luo, H.S. Liu, G. Jin, Opt. Laser Technol. 105, 146 (2018)

    Article  ADS  Google Scholar 

  24. Y.Q. Li, Z.R. Luo, H.S. Liu, Y.H. Dong, G. Jin, Chin. Phys. Lett. 29(7), 79501 (2012)

    Article  Google Scholar 

  25. Y.Q. Li, Z.R. Luo, H.S. Liu, Y.H. Dong, G. Jin, Appl. Phys. B 118(2), 309 (2015)

    Article  ADS  Google Scholar 

  26. Y.Q. Li, Z.R. Luo, H.S. Liu, R.H. Gao, G. Jin, Microgr. Sci. Technol. 30(6), 817 (2018)

    Article  ADS  Google Scholar 

  27. T. Westphal, G. Bergmann, A. Bertolini, M. Born, Y. Chen, A.V. Cumming, L. Cunningham, K. Dahl, C. Gräf, G. Hammond, G. Heinzel, S. Hild, S. Huttner, R. Jones, F. Kawazoe, S. Köhlenbeck, G. Kühn, H. Lück, K. Mossavi, J.H. Pöld, K. Somiya, A.M. van Veggel, A. Wanner, B. Willke, K.A. Strain, S. Goßler, K. Danzmann, Appl. Phys. B 106, 551 (2012)

    Article  ADS  Google Scholar 

  28. M. Tröbs, G. Heinzel, Measurement 39, 120 (2006)

    Article  ADS  Google Scholar 

  29. G. Heinzel, A. Rüdiger, R. Schilling, Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a comprehensive list of window functions and some new flat-top windows. Technical Report (Albert-Einstein-Institut: Hannover, Germany 2002)

  30. Y.Q. Li, C.Y. Wang, L.Y. Wang, H. Liu, G. Jin, Microgr. Sci. Technol. 32, 331 (2020)

    Article  ADS  Google Scholar 

  31. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Appl. Phys. B 31(2), 97 (1983)

    Article  ADS  Google Scholar 

  32. Y.H. Dong, H.S. Liu, Z.R. Luo, Y.Q. Li, G. Jin, Rev. Sci. Instrum. 85(7), 074501 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the China IPPR International Engineering Co., LTD for providing the design of the seismically isolated ground, and thank the Beijing LeyFond Vacuum Tech. Co., LTD for providing the design and manufacture of the vacuum system. Besides, this work was supported by the Beijing Kechuang Platform Project, and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB23030200), and the National Natural Science Foundation of China (Grant No. 61575209), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2018024), the authors express their sincere thanks for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Qiong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YQ., Jin, G. A brief overview of 8 m prototype facility of laser interferometer for Taiji pathfinder mission. Appl. Phys. B 127, 88 (2021). https://doi.org/10.1007/s00340-021-07637-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07637-2

Navigation