Skip to main content
Log in

Laser Interferometer for Space Gravitational Waves Detection and Earth Gravity Mapping

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The idea of using space laser interferometer to measure the relative displacement change between two satellites has been considered for space gravitational waves detection and Earth gravity filed mapping in recent years. Some investigations on the key issues of laser interferometer in our working team have been presented in this paper. An on-ground laser interferometer prototype used for the demonstration of satellite-to-satellite ranging has been constructed, which is equipped with phasemeter, laser pointing modulation and laser phase-locking control. The experimental results show that path-length measurement sensitivity of the laser interferometer reaches 200 pm/ Hz, and phase measurement precision achieves 2π × 10− 5 rad/ Hz, and laser pointing modulation precision is better than 80 nrad/ Hz, and laser phase-locking control precision attains 2π × 10− 4 rad/ Hz within the frequency regime of 1 mHz–1 Hz. All of these demonstrate that the proposed laser interferometer has very promising feasibility to meet the requirement of the Taiji, TianQin and Space Advanced Gravity Measurement (SAGM) missions which are put forward by Chinese scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abbott, B.P., Abbott, R., Abbott, T.D., et al.: GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116(24), 241103 (2016a)

  • Abbott, B.P., Abbott, R., Abbott, T.D., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016b)

  • Abbott, B.P., Abbott, R., Abbott, T.D., et al.: GW170104: observation of a 50-solar-mass binary black hole coalescence at Redshift 0.2. arXiv:1706.01812 (2017)

  • Bender, P.L.: Wavefront distortion and beam pointing for LISA. Class. Quantum Grav. 22(10), S339–S346 (2005)

    Article  Google Scholar 

  • Bender, P.L., Nerem, R.S., Wahr, J.M.: Possible future use of laser gravity gradiometers. In: Earth Gravity Field from Space—from Sensors to Earth Sciences, pp 385–392. Springer, Netherlands (2003)

  • Bender, P.L., Begelman, M.C., Gair, J.R.: Possible LISA follow-on mission scientific objectives. Class. Quantum Grav. 30(16), 165017 (2013)

    Article  Google Scholar 

  • Bykov, I., Delgado, J.J.E., Marín, A. F. G., Heinzel, G., Danzmann, K.: LISA phasemeter development: Advanced prototyping. J. Phys.: Conf. Ser. 154(1), 012017 (2009)

    Google Scholar 

  • Cyranoski, D: Chinese gravitational-wave hunt hits crunch time. Nature 531, 150–151 (2016)

    Article  Google Scholar 

  • Danzmann, K., LISA Study Team: LISA: laser interferometer space antenna for gravitational wave measurements. Class. Quantum Grav. 13(11A), A247–A250 (1996)

    Article  Google Scholar 

  • Dehne, M., Cervantes, F.G., Sheard, B., Heinzel, G., Danzmann, K.: Laser interferometer for spaceborne mapping of the Earth’s gravity field. J. Phys.: Conf. Ser. 154(1), 012023 (2009)

    Google Scholar 

  • Dong, Y.H., Liu, H.S., Luo, Z.R., Li, Y.Q., Jin, G.: Methodological demonstration of laser beam pointing control for space gravitational wave detection missions. Rev. Sci. Instrum. 85(7), 074501 (2014)

    Article  Google Scholar 

  • Gerberding, O., Sheard, B., Bykov, I., Kullmann, J., Delgado, J.J.E., Danzmann, K., Heinzel, G.: Phasemeter core for intersatellite laser heterodyne interferometry: modelling, simulations and experiments. Class. Quantum Grav. 30(23), 235029 (2013)

    Article  Google Scholar 

  • Gong, X., Xu, S., Bai, S., Cao, Z., Chen, G., Chen, Y., He, X., Heinzel, G., Lau, Y.K., Liu, C., Luo, J., Luo, Z., Patón, A.P., Rüdiger, A., Shao, M., Spurzem, R., Wang, Y., Xu, P., Yeh, H.C., Yuan, Y., Zhou, Z.: A scientific case study of an advanced LISA mission. Class. Quantum Grav. 28(9), 094012 (2011)

    Article  Google Scholar 

  • Heinzel, G.: Satellite interferometry from LTP and GRACE Follow-On to LISA. In: International Symposium on Gravitational Waves. University of Chinese Academy of Sciences, Beijing (2017)

  • Heinzel, G., Braxmaier, C., Schilling, R., Rüdiger, A., Robertson, D., Te Plate, M., Wand, V., Arai, K., Johann, U., Danzmann, K.: Interferometry for the LISA technology package (LTP) aboard SMART-2. Class. Quantum Grav. 20(10), S153–S161 (2003)

    Article  MATH  Google Scholar 

  • Heinzel, G., Wand, V., Garcia, A., Jennrich, O., Braxmaier, C., Robertson, D., Middleton, K., Hoyland, D., Rüdiger, A., Schilling, R., Johann, U., Danzmann, K.: The LTP interferometer and phasemeter. Class. Quantum Grav. 21(5), S581 (2004)

    Article  Google Scholar 

  • Heinzel, G., Braxmaier, C., Danzmann, K., Gath, P., Hough, J., Jennrich, O., Johann, U., Rüdiger, A., Sallusti, M., Schulte, H.: LISA interferometry: recent developments. Class. Quantum Grav. 23(8), S119 (2006)

    Article  Google Scholar 

  • Lhermite, J., Desfarges-Berthelemot, A., Kermene, V., Barthelemy, A.: Passive phase locking of an array of four fiber amplifiers by an all-optical feedback loop. Opt. Lett. 32(13), 1842–1844 (2007)

    Article  Google Scholar 

  • Li, Y.Q., Luo, Z.R., Liu, H.S., Dong, Y.H., Jin, G.: Laser interferometer used for satellite–satellite tracking: an on-ground methodological demonstration. Chin. Phys. Lett. 29(7), 079501 (2012)

    Article  Google Scholar 

  • Liang, Y.R., Duan, H.Z., Yeh, H.C., Luo, J.: Fundamental limits on the digital phase measurement method based on cross-correlation analysis. Rev. Sci. Instrum. 83(9), 095110 (2012)

    Article  Google Scholar 

  • Liu, H.S., Dong, Y.H., Li, Y.Q., Luo, Z.R., Jin, G.: The evaluation of phasemeter prototype performance for the space gravitational waves detection. Rev. Sci. Instrum. 85(2), 024503 (2014)

    Article  Google Scholar 

  • Nagano, S., Yoshino, T., Kunimori, H., Hosokawa, M., Kawamura, S., Sato, T., Ohkawa, M.: Displacement measuring technique for satellite-to-satellite laser interferometer to determine Earth’s gravity field. Meas. Sci. Technol. 15(12), 2406–2411 (2004)

    Article  Google Scholar 

  • Nagano, S., Hosokawa, M., Kunimori, H., Yoshino, T., Kawamura, S., Ohkawa, M., Sato, T.: Development of a simulator of a satellite-to-satellite interferometer for determination of the Earth’s gravity field. Rev. Sci. Instrum. 76(12), 124501 (2005)

    Article  Google Scholar 

  • Olivier, C., Christian, S., Luca, M., Roger, H., Pierluigi, S.: A spaceborne gravity gradiometer concept based on cold atom interferometers for measuring Earth’s gravity field. Microgravity Sci. Technol. 26(3), 139–145 (2014)

    Article  Google Scholar 

  • Pierce, R., Leitch, J., Stephens, M., Bender, P., Nerem, R.: Intersatellite range monitoring using optical interferometry. Appl. Opt. 47(27), 5007–5019 (2008)

    Article  Google Scholar 

  • Sascha, K., Christian, V., Andreas, R., et al.: Miniaturized lab system for future cold atom experiments in microgravity. Microgravity Sci. Technol. 29(1–2), 37–48 (2017)

    Google Scholar 

  • Schumaker, B.L.: Disturbance reduction requirements for LISA. Class. Quantum Grav. 20(10), S239–S253 (2003)

    Article  MATH  Google Scholar 

  • Shaddock, D., Ware, B., Halverson, P.G., Spero, R.E., Klipstein, B.: Overview of the LISA Phasemeter. J. Phys.: Conf. Ser. 873(1), 654–660 (2006)

    Google Scholar 

  • Sheard, B.S., Heinzel, G., Danzmann, K., Shaddock, D.A., Klipstein, W.M., Folkner, W.M.: Intersatellite laser ranging instrument for the GRACE follow-on mission. J. Geodyn. 86(12), 1083–1095 (2012)

    Article  Google Scholar 

  • Yeh, H.C., Yan, Q.Z., Liang, Y.R., Wang, Y., Luo, J.: Intersatellite laser ranging with homodyne optical phase locking for Space Advanced Gravity Measurements mission. Rev. Sci. Instrum. 82(4), 044501 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDB23030200, and the National Natural Science Foundation of China, Grant No. 61575209.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Jin.

Additional information

This article belongs to the Topical Collection: Approaching the Chinese Space Station - Microgravity Research in China

Guest Editors: Jian-Fu Zhao, Shuang-Feng Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Luo, Z., Liu, H. et al. Laser Interferometer for Space Gravitational Waves Detection and Earth Gravity Mapping. Microgravity Sci. Technol. 30, 817–829 (2018). https://doi.org/10.1007/s12217-018-9624-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-018-9624-7

Keywords

Navigation