Skip to main content
Log in

Space-borne gravitational wave observatories

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The paper describes the progress toward a space-borne gravitational wave observatory and its foreseeable science potential. In particular the paper describes the status of the LISA-like mission called eLISA, the reference mission for the Gravitational Universe theme adopted by ESA for its Large mission L3, and the status of its precursor LISA Pathfinder, due to launch in 2015.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. In addition to those effect, the signal would also carry the large frequency drift due to the secular change of the length of the arm. This signal is out of the measurement band of the instrument and is effectively suppressed by the data processing.

  2. Forces in the following are always intended per unit mass. To stress this, we prefer to indicate forces by using the symbol g instead of the more obvious f like in force.

References

  1. Vitale, S., et al.: Lisa and its in-flight test precursor on smart-2. Nucl. Phys. B (Proc. Suppl.) 110, 209 (2002)

    Article  ADS  Google Scholar 

  2. Amaro Seoane, P., et al.: The Gravitational Universe arXiv:1305.5720 [astro-ph.CO], (2013)

  3. http://sci.esa.int/ngo/49839-ngo-assessment-study-report-yellow-book/#

  4. Seto, N., Kawamura, S., Nakamura, T.: Possibility of direct measurement of the acceleration of the universe using 0.1 hz band laser interferometer gravitational wave antenna in space. Phys. Rev. Lett. 87, 221103 (2001)

    Article  ADS  Google Scholar 

  5. Crowder, J., Cornish, N.J.: Beyond lisa: exploring future gravitational wave missions. Phys. Rev. D 72, 083005 (2005)

    Article  ADS  Google Scholar 

  6. Livas, J., et al.: SGO Mid: A LISA-like concept for the space-based gravitational-wave observatory (SGO) at a middle price-point, http://pcos.gsfc.nasa.gov/studies/rfi/GWRFI-0015-Livas

  7. http://sci.esa.int/cosmic-vision/53259-esas-new-vision-to-study-the-invisible-universe/

  8. Congedo, G., et al.: Space-borne gravitational-wave detectors as time-delayed differential dynamometers. Phys. Rev. D 88, 082003 (2013)

    Article  ADS  Google Scholar 

  9. Anza, S., et al.: The ltp experiment on the lisa pathfinder mission. Class. Quantum Gravit. 22, S125–S138 (2005)

    Article  ADS  Google Scholar 

  10. Amaro-Seoane, P., et al.: Low-frequency gravitational-wave science with elisa/ngo. Class. Quantum Gravit. 29, 124016 (2012). doi:10.1088/0264-9381/29/12/124016

    Article  ADS  Google Scholar 

  11. Tinto, M., Dhurandhar, S.V.: Time-delay interferometry. Living Rev. Relat. 8, 4 (2005)

    ADS  Google Scholar 

  12. de Vine, G., et al.: Experimental demonstration of time-delay interferometry for the laser interferometer space antenna. Phys. Rev. Lett. 104, 211103 (2010)

  13. Mitryk, S.J., Mueller, G., Sanjuan, J.: Hardware-based demonstration of time-delay interferometry and tdi-ranging with spacecraft motion effects. Phys. Rev. D 86, 122006 (2012)

    Article  ADS  Google Scholar 

  14. Dolesi, R., et al.: Gravitational sensor for lisa and its technology demonstration mission. Class. Quantum Gravit. 20, S99S108 (2003)

    Article  Google Scholar 

  15. Robertson, D.I., et al.: Construction and testing of the optical bench for lisa pathfinder. Class. Quantum Gravit. 30, 085006 (2013)

    Article  ADS  Google Scholar 

  16. Audley, H., et al.: The lisa pathfinder interferometryhardware and system testing. Class. Quantum Gravit. 28, 094003 (2011)

    Article  ADS  Google Scholar 

  17. Matticari, G., et al.: Cold gas micro propulsion prototype for very fine spacecraft attitude/position control. In: 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit American Institute of Aeronautics and Astronautics (2006) doi:10.2514/6.2006-4872

  18. Antonucci, F., et al.: Lisa pathfinder data analysis. Class. Quantum Gravit. 28, 094006 (2011). doi:10.1088/0264-9381/28/9/094006

    Article  ADS  Google Scholar 

  19. Ferraioli, L., Hueller, M., Vitale, S.: Discrete derivative estimation in lisa pathfinder data reduction. Class. Quantum Gravit. 26, 094013 (2009). doi:10.1088/0264-9381/26/9/094013

    Article  ADS  Google Scholar 

  20. Grynagier, A., Fichter, W., Vitale, S.: The lisa pathfinder drift mode: implementation solutions for a robust algorithm. Class. Quantum Gravit. 26, 094007 (2009). doi:10.1088/0264-9381/26/9/094007

    Article  ADS  Google Scholar 

  21. The LTP data analysis tool (LTPDA) is downloadable at http://www.lisa.aei-hannover.de/ltpda/

  22. Carbone, L., et al.: Achieving geodetic motion for lisa test masses: ground testing results. Phys. Rev. Lett. 91, 151101 (2003)

    Article  ADS  Google Scholar 

  23. Cavalleri, A., et al.: A new torsion pendulum for testing the limits of free-fall for lisa test masses. Class. Quantum Gravit. 26, 094017 (2009)

    Article  ADS  Google Scholar 

  24. Carbone, L., et al.: Thermal gradient-induced forces on geodesic reference masses for lisa. Phys. Rev. D 76, 102003 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  25. Cavalleri, A., et al.: Increased brownian force noise from molecular impacts in a constrained volume. Phys. Rev. Lett. 103, 140601 (2009)

    Article  ADS  Google Scholar 

  26. Antonucci, F., et al.: The interaction between stray electrostatic fields and a charged free-falling test mass. Phys. Rev. Lett. 108, 181101 (2012)

    Article  ADS  Google Scholar 

  27. Antonucci, F., et al.: The lisa pathfinder mission. Class. Quantum Gravit. 29, 124014 (2012). doi:10.1088/0264-9381/29/12/124014

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I thank Karsten Danzmann, Paul McNamara and Bill Weber for their critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Vitale.

Additional information

Stefano Vitale for the eLISA consortium and the LISA Pathfinder team.

This article belongs to the Topical Collection: The First Century of General Relativity: GR20/Amaldi10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitale, S. Space-borne gravitational wave observatories. Gen Relativ Gravit 46, 1730 (2014). https://doi.org/10.1007/s10714-014-1730-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1730-2

Keywords

Navigation