Skip to main content
Log in

Path-length measurement performance evaluation of polarizing laser interferometer prototype

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The space laser interferometer has been considered the most promising means for detecting gravitational waves and improving the accuracy and spatial resolution of the Earth’s gravity model. An on-ground polarizing laser interferometer prototype equipped with one reference interferometer and two measurement interferometers having equal-length arms is presented in the paper. The laser interferometer prototype is designed as the demonstration of a Chinese space laser interferometer antenna in the future, of which the path-length measurement performance evaluation and preliminary noise analysis are investigated here. The results show that the path-length measurement sensitivity is better than 200 pm/Hz½ in the frequency band of 10 mHz–1 Hz, and the sensitivity of measuring the motion of a sinusoidally driven testmass is better than 100 pm within the frequency regime of 1 mHz–1 Hz. In this way, laboratory activities have demonstrated the feasibility of this prototype to measure tiny path-length fluctuations of the simulated testmass. As a next step, adopting an integrated design of optics and optical substrate to enhance the stability of the laser interferometer is being planned, and other key techniques included in the space laser interferometer such as laser pointing modulation and laser phase-locking control are to be implanted into this prototype are under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Danzmann, The LISA study team, Class. Quantum Gravity 13, A247 (1996)

    Article  ADS  Google Scholar 

  2. K. Danzmann for the LISA Study Team, Class. Quantum Gravity 14, 1399 (1997)

    Article  ADS  Google Scholar 

  3. K. Danzmann for the LISA Study Team, Adv. Space Res. 25, 1129 (2000)

    Article  ADS  Google Scholar 

  4. R. Reinhard, ESA Bull. 103, 36 (2000)

    Google Scholar 

  5. N. Seto, S. Kawamura, T. Nakamura, Phys. Rev. Lett. 87, 221103 (2001)

    Article  ADS  Google Scholar 

  6. A. Hammesfahr, Class. Quantum Gravity 18, 4045 (2001)

    Article  ADS  MATH  Google Scholar 

  7. T. Edwards, M.C.W. Sandford, Acta Astronaut. 48, 549 (2001)

    Article  ADS  Google Scholar 

  8. O. Jennrich, Nucl. Phys. B 113, 282 (2002)

    Article  Google Scholar 

  9. K. Danzmann, A. Rüdiger, Class. Quantum Gravity 20, S1 (2003)

    Article  ADS  MATH  Google Scholar 

  10. P.L. Bender, Class. Quantum Gravity 21, S1203 (2004)

    Article  ADS  Google Scholar 

  11. V. Corbin, N.J. Cornish, Class. Quantum Gravity 23, 2435 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. G.M. Harry, P. Fritschel, D.A. Shaddock, W. Folkner, E.S. Phinney, Class. Quantum Gravity 23, 4887 (2006)

    Article  ADS  MATH  Google Scholar 

  13. P.L. Bender, M.C. Begelman, J.R. Gair, Class. Quantum Gravity 30, 165017 (2013)

    Article  ADS  Google Scholar 

  14. G. Heinzel, C. Braxmaier, K. Danzmann, P. Gath, J. Hough, O. Jennrich, U. Johann, A. Rüdiger, M. Sallusti, H. Schulte, Class. Quantum Gravity 23, S119 (2006)

    Article  ADS  Google Scholar 

  15. O. Jennrich, P. Binetruy, M. Colpi, K. Danzmann, P. Jetzer, A. Lobo et al., Assessment study report, ESA/SRE 19 (2012)

  16. S. Nagano, M. Hosokawa, H. Kunimori, T. Yoshino, S. Kawamura, M. Ohkawa, T. Sato, Rev. Sci. Instrum. 76, 124501 (2005)

    Article  ADS  Google Scholar 

  17. R. Rummel, in Towards an Integrated Global Geodetic Observing System (IGGOS), Munich, Germany, 59 October (1998), Vol. 12 (Springer, 2000)

  18. S. Nagano, T. Yoshino, H. Kunimori, M. Hosokawa, S. Kawamura, T. Sato, M. Ohkawa, Meas. Sci. Technol. 15, 2406 (2004)

    Article  ADS  Google Scholar 

  19. M. Dehne, F.G. Cervantes, B. Sheard, G. Heinzel, K. Danzmann, J. Phys: Conf. Ser. 154, 012023 (2009)

    ADS  Google Scholar 

  20. R.T. Stebbins, Class. Quantum Gravity 26, 094014 (2009)

    Article  ADS  Google Scholar 

  21. B.S. Sheard, G. Heinzel, K. Danzmann, D.A. Shaddock, W.M. Klipstein, W.M. Folkner, J. Geod. 86, 1083 (2012)

    Article  ADS  Google Scholar 

  22. P.L. Bender, R. Nerem, J. Wahr, Space Sci. Rev. 108, 385 (2003)

    Article  ADS  Google Scholar 

  23. M. Horwath, J.M. Lemoine, R. Biancale, S. Bourgogne, J. Geod. 85, 23 (2011)

    Article  ADS  Google Scholar 

  24. R. Pierce, J. Leitch, M. Stephens, P. Bender, R. Nerem, Appl. Opt. 47, 5007 (2008)

    Article  ADS  Google Scholar 

  25. J. Lhermite, A. Desfarges-Berthelemot, V. Kermene, A. Barthelemy, Opt. Lett. 32, 1842 (2007)

    Article  ADS  Google Scholar 

  26. X.F. Gong, S.N. Xu, S. Bai, Z.J. Cao, G.R. Chen, Y.B. Chen, X.K. He, G. Heinzel, Y.K. Lau, C.Z. Liu, J. Luo, Z.R. Luo et al., Class. Quantum Gravity 28, 094012 (2011)

    Article  ADS  Google Scholar 

  27. S.F.P. Zwart, E.P.K. van den Heuvel, Nature 450, 388 (2007)

    Article  ADS  Google Scholar 

  28. M.C. Miller, D.P. Hamilton, Mon. Not. R. Astron. Soc. 330, 232 (2002)

    Article  ADS  Google Scholar 

  29. M.C. Miller, Astrophys. J. 581, 438 (2002)

    Article  ADS  Google Scholar 

  30. M.C. Miller, E.J.M. Colbert, Int. J. Mod. Phys. D 13, 1 (2004)

    Article  ADS  MATH  Google Scholar 

  31. M.A. Gürkan, J.M. Fregeau, F.A. Rasio, Astrophys. J. 640, L39 (2006)

    Article  ADS  Google Scholar 

  32. A. Heger, S.E. Woosley, Astrophys. J. 567, 532 (2002)

    Article  ADS  Google Scholar 

  33. P. Madau, M.J. Rees, Astrophys. J. 551, L27 (2001)

    Article  ADS  Google Scholar 

  34. Y.Q. Li, Z.R. Luo, H.S. Liu, Y.H. Dong, G. Jin, Chin. Phys. Lett. 29, 079501 (2012)

    Article  ADS  Google Scholar 

  35. H.C. Yeh, Q.Z. Yan, Y.R. Liang, Y.W. Wang, J. Luo, Rev. Sci. Instrum. 82, 044501 (2011)

    Article  ADS  Google Scholar 

  36. P. Amaro-Seoane, G. Auger, S. Babak et al., eLISA Whitepaper-RC1 (eLISA Working Group, 2013), pp. 13, 14

  37. F. Antonucci, M. Armano, H. Audley et al., Class. Quant. Grav. 28, 094002 (2011)

    Article  ADS  Google Scholar 

  38. S.J. Mitryk, G. Mueller, J. Sanjuan, Phys. Rev. D 86, 12006 (2012)

    Article  ADS  Google Scholar 

  39. G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. García, J. Hough, O. Jennrich et al., Class. Quantum Gravity 22, S149 (2005)

    Article  ADS  Google Scholar 

  40. M. Armano, M. Benedetti, J. Bogenstahl, D. Bortoluzzi, P. Bosetti, N. Brandt, A. Cavalleri, G. Ciani et al., Class. Quantum Gravity 26, 094001 (2009)

    Article  ADS  Google Scholar 

  41. M. Dehne, M. Trobs, G. Heinzel, K. Danzmann, Opt. Express 20, 27273 (2012)

    Article  ADS  Google Scholar 

  42. H.S. Liu, Y.H. Dong, Y.Q. Li, Z.R. Luo, G. Jin, Rev. Sci. Instrum. 85, 024503 (2014)

    Article  ADS  Google Scholar 

  43. T. Westphal, G. Bergmann, A. Bertolini, M. Born, Y. Chen, A.V. Cumming et al., Appl. Phys. B 106, 551 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work has been funded by the Scientific Equipment Development and Research Project of Chinese Academy of Sciences from 2011 to 2013 grant Y231411YB1 and supported by the Space Science Research Project in advance of Chinese Academy of Sciences from 2009 to 2011 grant O930143XM1. The authors thank Vitali Müller from the Max Planck Institute for Gravitational Physics for valuable help in the simulation of the laser interferometer prototype and data processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Jin.

Additional information

Yu-qiong Li and Zi-ren Luo Contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yq., Luo, Zr., Liu, Hs. et al. Path-length measurement performance evaluation of polarizing laser interferometer prototype. Appl. Phys. B 118, 309–317 (2015). https://doi.org/10.1007/s00340-014-5987-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5987-7

Keywords

Navigation