Skip to main content

Advertisement

Log in

Fluorescence spectroscopy of anisole at elevated temperatures and pressures

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Laser-induced fluorescence of anisole as tracer of isooctane at an excitation wavelength of 266 nm was investigated for conditions relevant to rapid compression machine studies and for more general application of internal combustion engines regarding temperature, pressure, and ambient gas composition. An optically accessible high pressure and high temperature chamber was operated by using different ambient gases (Ar, N2, CO2, air, and gas mixtures). Fluorescence experiments were investigated at a large range of pressure and temperature (0.2–4 MPa and 473–823 K). Anisole fluorescence quantum yield decreases strongly with temperature for every considered ambient gas, due to efficient radiative mechanisms of intersystem crossing. Concerning the pressure effect, the fluorescence signal decreases with increasing pressure, because increasing the collisional rate leads to more important non-radiative collisional relaxation. The quenching effect is strongly efficient in oxygen, with a fluorescence evolution described by Stern–Volmer relation. The dependence of anisole fluorescence versus thermodynamic parameters suggests the use of this tracer for temperature imaging in specific conditions detailed in this paper. The calibration procedure for temperature measurements is established for the single-excitation wavelength and two-color detection technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. P. Guibert, A. Keromnes, G. Legros, Flow Turbul. Combust. 84, 79 (2010)

    Article  MATH  Google Scholar 

  2. F. Zimmermann, W. Koban, C. Roth, D. Herten, C. Schulz, Chem. Phys. Lett. 426, 248 (2006)

    Article  ADS  Google Scholar 

  3. S. Kaiser, M. Long, Proc. Combust. Inst. 30, 1555 (2005)

    Article  Google Scholar 

  4. M. Kühni, C. Morin, P. Guibert, Appl. Phys. B 102, 659 (2011)

    Article  ADS  Google Scholar 

  5. C. Schulz, V. Sick, Prog. Energy Combust. Sci. 3, 75 (2005)

    Article  Google Scholar 

  6. S. Einecke, C. Schulz, V. Sick, Appl. Phys. B 71, 717 (2000)

    Article  ADS  Google Scholar 

  7. H. Zhao, N. Ladommatos, Prog. Energy Combust. Sci. 24, 297 (1998)

    Article  Google Scholar 

  8. W. Koban, J. Koch, R. Hanson, C. Schulz, Appl. Phys. B 80, 147 (2005)

    Article  ADS  Google Scholar 

  9. M. Orain, B. Baranger, B. Rossow, F. Grisch, Appl. Phys. B 102, 163 (2011)

    Article  ADS  Google Scholar 

  10. F. Grossmann, P. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, Appl. Phys. B 62, 249 (1996)

    Article  ADS  Google Scholar 

  11. M. Pasquini, N. Schiccheri, M. Becucci, G. Pietraperzia, J. Mol. Struct. 924, 457 (2009)

    Article  ADS  Google Scholar 

  12. H. Hippler, J. Troe, H. Wendelken, J. Chem. Phys. 78, 6709 (1983)

    Article  ADS  Google Scholar 

  13. N. Pasquier, B. Lecordier, M. Trinité, A. Cessou, Proc. Combust. Inst. 31, 1567 (2007)

    Article  Google Scholar 

  14. W. Robertson, J. Seriff, F. Matsen, J. Am. Chem. Soc. 72, 1539 (1950)

    Article  Google Scholar 

  15. W. Koban, J. Koch, R. Hanson, C. Schulz, Phys. Chem. Chem. Phys. 6, 2940 (2004)

    Article  Google Scholar 

  16. S. Fally, M. Carleer, A. Vandaele, J. Quant. Spectrosc. Radiat. Transf. 110, 766 (2009)

    Article  ADS  Google Scholar 

  17. M. Orain, P. Baranger, B. Rossow, E. Grisch, Appl. Phys. B 100, 945 (2010)

    Article  ADS  Google Scholar 

  18. R. Matsumoto, K. Sakeda, Y. Matsushita, T. Suzuki, T. Ichimura, J. Mol. Struct. 735, 153 (2005)

    Article  ADS  Google Scholar 

  19. M. Luong, W. Koban, C. Schulz, J. Phys. 45, 133 (2006)

    Google Scholar 

  20. M. Luong, R. Zhang, C. Schulz, V. Sick, Appl. Phys. B 91, 669 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

M. Tran was supported by a joint PhD grant from the French Ministry of Research. This work was partly funded by the FUI (French Fond Unique Interministériel) in the framework of the MODELESSAIS Pôles de Compétitivité MOVE’O project, (www.pole-moveo.org) project number 07 2 90 6147.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. H. Tran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tran, K.H., Morin, C., Kühni, M. et al. Fluorescence spectroscopy of anisole at elevated temperatures and pressures. Appl. Phys. B 115, 461–470 (2014). https://doi.org/10.1007/s00340-013-5626-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5626-8

Keywords

Navigation