Skip to main content

Advertisement

Log in

Fluorescence spectroscopy of naphthalene at high temperatures and pressures: implications for fuel-concentration measurements

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Fluorescence of the S 1S 0 transition of naphthalene vapour after laser excitation at 266 nm was studied in a heated cell. Experiments were carried out for temperature in the range 350–900 K, at pressure between 0.1 and 3.0 MPa and for oxygen molar fraction from 0 to 21%. The absorption cross section of naphthalene showed a non-monotonic dependence upon temperature, which may be attributed to the spectral structures present in the absorption spectrum of naphthalene. Under nitrogen atmosphere, naphthalene fluorescence bi-exponentially decreased by an order of magnitude as temperature increased, whereas it increased by about 10% with pressure. Strong influence of quenching by O2 on naphthalene fluorescence was observed and Stern–Volmer plots were found to be linear for temperatures between 450 and 750 K. The dependence of naphthalene fluorescence on oxygen concentration suggests one to use this molecule for fuel-concentration measurements in turbulent flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Reboux, D. Puechberty, F. Dionnet, A new approach of planar laser induced fluorescence applied to Fuel/Air ratio measurement in a compression stroke of an optical S.I. engine. SAE Paper No. 941988 (1994)

  2. H. Fujimoto, D. Choi, Y. Shima, J. Senda, Meas. Science and Technol. 13, 391 (2002)

    Article  ADS  Google Scholar 

  3. W. Koban, J.D. Koch, V. Sick, N. Wermuth, R.K. Hanson, C. Schulz, in 30th Int. Symp. on Comb., pp. 1545–1553 (2009)

    Google Scholar 

  4. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Appl. Phys. B 80, 147–150 (2005)

    Article  ADS  Google Scholar 

  5. S. Kaiser, M. Long, Quantitative planar laser-induced fluorescence of naphthalenes as fuel tracers, in 30th Int. Symp. on Comb., pp. 1555–1563 (2004)

    Google Scholar 

  6. C. Löfström, H. Kaaling, M. Aldén, in 26th Int. Symp. on Comb., pp. 2787–2793 (1996)

    Google Scholar 

  7. Y.R. Hicks, R.J. Locke, R.C. Anderson, M. Zaller, H.J. Schock, Imaging fluorescent combustion species in gas turbine flame tubes: on complexities in real systems. AIAA Paper 97-2837 (1997)

  8. A. Arnold, R. Bombach, W. Hubschmid, A. Inauen, B. Käppeli, Exp. in Fluids 29, 468 (2000)

    Article  ADS  Google Scholar 

  9. P. Baranger, M. Orain, F. Grisch, Fluorescence spectroscopy of kerosene vapour: application to gas turbines. Paper AIAA, 2005-0828 (2005)

  10. M. Stockburger, H. Gattermann, W. Klusmann, J. Chem. Phys. 63, 4519 (1975)

    Article  ADS  Google Scholar 

  11. M. Stockburger, H. Gattermann, W. Klusmann, J. Chem. Phys. 63, 4529 (1975)

    Article  ADS  Google Scholar 

  12. P. Avouris, W.M. Gerlbart, M.A. El-Sayed, Chem. Reviews, 77, 793 (1977)

    Article  Google Scholar 

  13. S.M. Beck, J.B. Hopkins, D.E. Powers, R.E. Smalley, J. Chem. Phys. 73, 2019 (1980)

    Article  ADS  Google Scholar 

  14. S.M. Beck, J.B. Hopkins, D.E. Powers, R.E. Smalley, J. Chem. Phys. 74, 43 (1981)

    Article  ADS  Google Scholar 

  15. M. Suto, X. Wang, J. Shan, L.C. Lee, J. Quant. Spectrosc. Radiat. Transfer 48, 79 (1992)

    Article  ADS  Google Scholar 

  16. C. Reylé, P. Bréchignac, Eur. Phys. J. D 8, 205 (2000)

    Article  ADS  Google Scholar 

  17. F.M. Behlen, D.B. McDonald, V. Sethuraman, S.A. Rice, J. Chem. Phys. 75, 5685 (1981)

    Article  ADS  Google Scholar 

  18. J.B. Birks, Photophysics of Aromatic Molecules (Wiley-Interscience, New York, 1970)

    Google Scholar 

  19. I.B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules (Academic Press, New York, 1971)

    Google Scholar 

  20. E. Clar, Polycyclic Hydrocarbons (Academic Press, San Diego, 1964)

    Google Scholar 

  21. F. Ossler, T. Metz, M. Aldén, Appl. Phys. B 72, 465 (2001)

    Article  ADS  Google Scholar 

  22. J. Ferguson, L.W. Reeves, W.G. Schneider, Can. J. of Chemistry, 35, 1117 (1957)

    Article  Google Scholar 

  23. P. Baranger, Détection du kérosène par imagerie de fluorescence induite par laser, pour application sur foyer aéronautique. PhD thesis, Paris XI University, France (2004)

  24. Y. Zhang, T. Yoshizaki, K. Nishida, Appl. Optics 39, 6221 (2000)

    Article  ADS  Google Scholar 

  25. M. Orain, P. Baranger, B. Rossow, F. Grisch, Appl. Phys. B 100, 945 (2010)

    Article  ADS  Google Scholar 

  26. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Phys. Chem. Chem. Phys. 6, 2940 (2004)

    Article  Google Scholar 

  27. Y. Kimura, D. Abe, M. Terazima, J. Chem. Phys. 121, 5794 (2004)

    Article  ADS  Google Scholar 

  28. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Appl. Phys. B 80, 777 (2005)

    Article  ADS  Google Scholar 

  29. R.G. Brown, D. Philips, J. Chem. Soc., Faraday Trans. 70, 630 (1974)

    Article  Google Scholar 

  30. R.K. Hanson, in 21th Int. Symp. on Comb., pp. 1677–1691 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Orain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orain, M., Baranger, P., Rossow, B. et al. Fluorescence spectroscopy of naphthalene at high temperatures and pressures: implications for fuel-concentration measurements. Appl. Phys. B 102, 163–172 (2011). https://doi.org/10.1007/s00340-010-4353-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4353-7

Keywords

Navigation