Skip to main content

Advertisement

Log in

Anisole fluorescence spectroscopy for temperature measurements with a Hg (Xe) arc lamp excitation

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The main contribution of this study is to propose time-resolved measurements to determine temperature with a novel source of continuous excitation for an induced fluorescence technique with laser diagnosis based on tracer-induced fluorescence, which has become a major tool for experimental studies of fluid dynamics in reaction flows. We use a Hg (Xe) arc lamp as a continuous light source that has a wide range of emissions in wavelength. With this setup, one can reach high spatial and temporal resolution (temperature, pressure, species concentration, and velocity) to acquire quantitative data for the control of fluid thermal systems, such as engines, combustion chambers, furnaces, and reactors. A fluorescence study was performed on various tracers and their configurations. We focus on an anisole tracer using a broad wavelength of excitations. We propose a calibration to achieve temperature measurements in the range of 493–773 K and from 0.2 to 3.5 MPa of pressure. The temperature-dependent fluorescence is based on a two-line technique. The results give a better understanding of the influence of temperature and pressure in a nitrogen bath gas on the fluorescence photophysics in the UV domain. High temporal resolution was acquired using a high-speed intensified camera setup. The application of the photomultipliers manages the time-scale evolution of the flow in continuous emission and this eliminates the signal-to-noise ratio impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Cheung B, Hanson R (2010) CW laser-induced fluorescence of toluene for time-resolved imaging of gaseous flows. Appl Phy B Lasers Opt 98:581–591. doi:10.1007/s00340-009-3785-4

    Article  Google Scholar 

  • Devillers R, Bruneaux G, Schulz C (2009) Investigation of toluene LIF at high pressure and high temperature in an optical engine. Appl Phy B Lasers Opt 96:735–739. doi:10.1007/s00340-009-3563-3

    Article  Google Scholar 

  • Downes S, Knott A, Robinson I (2014) Towards a shock tube method for the dynamic calibration of pressure sensors. Philos Trans R Soc A Math Phy Eng Sci. doi:10.1098/rsta.2013.0299

    Google Scholar 

  • Etzkorn T, Klotz B, Sorensen S, Patroescu I, Barnes I, Becker K, Platt U (1999) Gas-phase absorption cross sections of 24 monocyclic aromatic hydrocarbons in UV and IR spectral ranges. Atmos Environ 33:525–540. doi:10.1016/S1352-2310(98)00289-1

    Article  Google Scholar 

  • Faust S, Dreier T, Schulz C (2013) Photo-physical properties of anisole: temperature, pressure and bath gas composition dependence of fluorescence spectra and lifetimes. Appl Phy B Lasers Opt 112:203–213. doi:10.1007/s00340-013-5420-7

    Article  Google Scholar 

  • Grossmann F, Monkhouse P, Ridder M, Sick V, Wolfrum J (1996) Temperature and pressure dependences of the laser-induced fluorescence of gas phase acetone and 3 pentanone. Appl Phy B Lasers Opt 64:4963–4978

    Google Scholar 

  • Guibert P, Perrard W, Morin C (2002) Concentration measurements in a pressurized and heated gas mixture flow using laser induced fluorescence. J Fluid Eng 124:512–522. doi:10.1115/1.1456462

    Article  Google Scholar 

  • Guibert P, Modica V, Morin C (2005) Influence of pressure, temperature and gas-phase composition on biacetyl laser-induced fluorescence. Exp Fluids 40:245–256. doi:10.1007/s00348-005-0064-y

    Article  Google Scholar 

  • Hall L, Hunter T, Stock M (1976) Absolute fluorescence quantum yields for vapour phase benzene and naphthalene, and comments on the non radiative processes. Chem Phys Lett 44:145–149. doi:10.1016/0009-2614(76)80429-0

    Article  Google Scholar 

  • Hamamatsu documentation (2012) Super-quiet Xenon lamp Super-quiet Mercury-Xenon lamp. http://www.hamamatsu.com/resources/pdf/etd/Xe-HgXe_TLSX1044E.pdf. Accessed 7 Nov 2015

  • Hansen D, Lee E (1975) Radiative and nonradiative transitions in the first excited singlet state of symmetrical methyl substituted acetones. J Chem Phy 62:183–189. doi:10.1063/1.430259

    Article  Google Scholar 

  • He Y, Pollak E (2002) Theory of fluorescence decay of naphthalene: Was photoinduced cooling observed experimentally? J Chem Phy 116:6088. doi:10.1063/1.1458249

    Article  Google Scholar 

  • Hirasawa T, Kaneba T, Kamata Y, Muraoka K, Nakamura Y (2007) Temperature dependence of intensities of laser-induced fluorescences of ethylbenezene and naphthalene seeded in gas flow at atmospheric pressure. J Vis 10:197–205. doi:10.1007/BF03181831

    Article  Google Scholar 

  • Kaiser S, Long J (2005) Quantitative planar laser-induced fluorescence of naphthalenes as fuel tracers. Proc Combust Inst 30:1555–1563. doi:10.1016/j.proci.2004.08.263

    Article  Google Scholar 

  • Koban W, Koch J, Hanson R, Schulz C (2004) Absorption and fluorescence of toluene vapor at elevated temperatures. Phys Chem Chem Phys 6:2940–2945. doi:10.1039/B400997E

    Article  Google Scholar 

  • Koban W, Koch J, Hanson R, Schulz C (2005a) Oxygen quenching of toluene fluorescence at elevated temperatures. Appl Phy B Lasers Opt. doi:10.1007/s00340-005-1769-6

    Google Scholar 

  • Koban W, Koch J, Sick V, Wermuth N, Hanson R, Schulz C (2005b) Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions. Proc Combust Inst 30:1545–1553. doi:10.1016/j.proci.2004.08.119

    Article  Google Scholar 

  • Koch J, Hanson R (2003) Temperature and excitation wavelength dependencies of 3 pentanone absorption and fluorescence for PLIF applications. Appl Phy B Lasers Opt 76:319. doi:10.1007/s00340-002-1084-4

    Article  Google Scholar 

  • Kuhni M, Morin C, Guibert P (2011) Fluoranthene laser-induced fluorescence at elevated temperatures and pressures: Implications for temperature imaging. Appl Phy B Lasers Opt 102:659–671. doi:10.1007/s00340-010-4181-9

    Article  Google Scholar 

  • Lakowicz J (2006) Principles of fluorescence spectroscopy. 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Luong M, Koban W, Schulz C (2006) Novel strategies for imaging temperature distribution using toluene LIF. J Phy Conf Ser 45:133–139 doi:10.1088/1742-6596/45/1/017

    Article  Google Scholar 

  • Luong M, Zhang R, Schulz C, Sick V (2008) Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines. Appl Phy B 91:669–675

    Article  Google Scholar 

  • Marsh J (1924) Studies in fluorescence spectra. Part ll. Phenol and Phenolic ether vapours. J Chem Soc Trans 125:418–423. doi:10.1039/CT9242500418

    Article  Google Scholar 

  • Mohammadreza A, Hua Z, Mohammad R, Alasdair C (2015) Turbulent flame boundary and structure detection in an optical DISI engine using tracer-based two-line technique. Exp Thermal Fluid Sci 68:545–558. doi:10.1016/j.expthermflusci.2015.06.015

    Article  Google Scholar 

  • Orain M, Baranger P, Rossow R, Grisch F (2010) Fluorescence spectroscopy of 1,2,4-trimethylbenzene at high temperatures and pressures: application to temperature measurements. Appl Phy B Lasers Opt 100:945–952. doi:10.1007/s00340-010-3967-0

    Article  Google Scholar 

  • Ossler F, Alden M (1997) Measurements of picosecond laser induced fluorescence for gas phase 3 pentanone and acetone: Implications to combustion diagnostics. Appl Phy B Lasers Opt 64:493–502. doi:10.1007/s003400050205

    Article  Google Scholar 

  • Smith J, Sick V (2007) Quantitative, dynamic fuel distribution measurements in combustion related devices using laser induced fluorescence imaging of biacetyl in iso-octane. Proc Combust Inst 31:747–755. doi:10.1016/j.proci.2006.07.049

    Article  Google Scholar 

  • Thurber M, Grisch F, Kirby B, Votsmeier M, Hanson R (1998) Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics. Appl Optics 37:4963–4978. doi:10.1364/AO.37.004963

    Article  Google Scholar 

  • Tran K, Morin C, Kuhni M, Guibert P (2014) Fluorescence spectroscopy of anisole at elevated temperatures and pressures. Appl Phy B Lasers Opt 115:461–470

    Article  Google Scholar 

  • Tran K, Guibert P, Morin C, Bonnety J, Pounkin S, Legros G (2015) Temperature measurements in a rapid compression machine using anisole planar laser-induced fluorescence. Combust Flame 162:3960–3970. doi:10.1016/j.combustflame.2015.07.033

    Article  Google Scholar 

  • Zabeti S, Aghsaee M, Fikri M, Welz O, Schulz C (2015) A high-temperature shock-tube study on the optical properties and pyrolysis of anisole. Paper presented at the Proceedings of the European Combustion Meeting, Budapest, Hungary

  • Zhang R, Bohac S, Sick V (2006) Stability of isooctane mixtures with 3 pentanone or biacetyl as fluorescence tracers in combustion experiments. Exp Fluids 40:161–163. doi:10.1007/s00348-005-0057-x

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge CEA for its support. (CEA, Commissariat for Atomic Energy and Alternative Energies, public organization of science-research, technical, and industrial centre).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Guibert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guibert, P., Kanumuri, S.S., Bonnety, J. et al. Anisole fluorescence spectroscopy for temperature measurements with a Hg (Xe) arc lamp excitation. Exp Fluids 58, 23 (2017). https://doi.org/10.1007/s00348-017-2302-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-017-2302-5

Keywords

Navigation