Skip to main content
Log in

A study on temperature dependent dielectric relaxation behaviour and conduction mechanism of La and Ti co-doped bismuth ferrite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A series of La and Ti co-doped bismuth ferrite ceramics have been synthesized using the modified sol–gel approach and their crystal structures were verified using X-ray diffraction. Complex impedance analysis has been used to examine the conduction mechanisms and microscopic dielectric relaxations in all of these materials. To examine the behaviour of the dielectric constant's dispersion, the modified Debye's function has been utilized. The dielectric characteristics of each sample have been described using the brick-layer model. In order to understand the conduction mechanism, relaxation period and activation energies, Arrhenius equation and Jonscher's power law were used. The dc conductivity (σDc) decreases significantly by increasing the co-doping percentage of La and Ti which indicates that the dielectric properties of the BFO is improved by the co-doping. The Jonscher's power law fitting parameters indicate that the correlated barrier hopping (CBH) conduction model is followed in all the co-doped samples. Moreover, Electric modulus spectroscopy and the observed values of activation energies suggests the localized and long-range relaxation processes, which are basically non-Debye type relaxation processes. The minimum value of dielectric loss factor was obtained for 10% of La and Ti co-doping. The observed trend in values of activation energies also suggests that the best dielectric properties are obtained for the 10% of La and Ti co-doping in BFO and it retain high dielectric constant up to higher temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Data will be made available on the reasonable request.

References

  1. J.F. Scott, J. Mater. Chem. (2012). https://doi.org/10.1039/c2jm16137k

    Article  Google Scholar 

  2. N.A. Hill, J. Phys. Chem. B (2000). https://doi.org/10.1002/chin.200049237

    Article  Google Scholar 

  3. R. Ramesh, N.A. Spaldin, Nat. Mater. (2007). https://doi.org/10.1038/nmat1805

    Article  Google Scholar 

  4. G. Catalan, J.F. Scott, Adv. Mater. (2009). https://doi.org/10.1002/adma.200802849

    Article  Google Scholar 

  5. S.W. Cheong, M. Mostovoy, Nat. Mater. (2007). https://doi.org/10.1038/nmat1804

    Article  Google Scholar 

  6. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature (2006). https://doi.org/10.1002/chin.200644216

    Article  Google Scholar 

  7. D.H. Wang, W.C. Goh, M. Ning, C.K. Ong, Appl. Phys. Lett. (2006). https://doi.org/10.1063/1.2208266

    Article  Google Scholar 

  8. L.W. Martin, R. Ramesh, Acta Mater. (2012). https://doi.org/10.1016/j.actamat.2011.12.024

    Article  Google Scholar 

  9. R. Ramesh, Nature (2009). https://doi.org/10.1038/4611218a

    Article  Google Scholar 

  10. J. Wang, J.B. Neaton, H. Zheng, Science (2003). https://doi.org/10.1002/chin.200324015

    Article  Google Scholar 

  11. A. Singh, V. Pandey, R.K. Kotnala, D. Pandey, Phys. Rev. Lett. (2008). https://doi.org/10.1103/physrevlett.101.247602

    Article  Google Scholar 

  12. I. Dzyaloshinsky, J. Phys. Chem. Solids (1958). https://doi.org/10.1016/0022-3697(58)90076-3

    Article  Google Scholar 

  13. A. Palewicz, R. Przeniosolo, I. Sonsnowska, A.W. Hewat, Acta Cryst. B (2007). https://doi.org/10.1107/s0108768107023956

    Article  Google Scholar 

  14. A. Palewicz, I. Sonsnowska, R. Przeniosolo, A.W. Hewat, Acta Cryst. Phys. Pol. A (2010). https://doi.org/10.12693/aphyspola.117.296

    Article  Google Scholar 

  15. S. Ghosh, S. Dasgupta, A. Sen, H.S. Maiti, J. Am. Ceram. Soc. (2005). https://doi.org/10.1111/j.1551-2916.2005.00306.x

    Article  Google Scholar 

  16. C.H. Yang, D. Kan, I. Takeuchi, V. Nagarajan, Phys. Chem. Chem. Phys. (2012). https://doi.org/10.1039/c2cp43082g

    Article  Google Scholar 

  17. R.D. Shannon, Acta Crystallgr. A (1976). https://doi.org/10.1107/s0567739476001551

    Article  Google Scholar 

  18. S.M. Selbach, T. Tybell, M.A. Einarsurd, T. Grande, Chem. Mater. (2007). https://doi.org/10.1021/cm071827w

    Article  Google Scholar 

  19. R. Haumont, J. Kreisel, P. Bouvier, Phase Transition (2006). https://doi.org/10.1080/01411590601067342

    Article  Google Scholar 

  20. A.V. Zalesskii, A.A. Frolov, T.A. Khimich, A.A. Bush, Phys. Solid State (2003). https://doi.org/10.1134/1.1537425

    Article  Google Scholar 

  21. V.R. Palkar, D.C. Kundaliya, S.K. Malik, S. Bhattacharya, Phys. Rev. B (2004). https://doi.org/10.1103/PhysRevB.69.212102

    Article  Google Scholar 

  22. Q. Xu, H. Zai, D. Wu, Y.K. Tanga, M.X. Xu, J. Alloys Compd. (2009). https://doi.org/10.1016/j.jallcom.2009.05.129

    Article  Google Scholar 

  23. S. Ghosh, S. Dasgupta, A. Sen, H.S. Maiti, Mater. Res. Bull. (2005). https://doi.org/10.1016/j.materresbull.2005.07.017

    Article  Google Scholar 

  24. J.K. Kim, S.S. Kim, W.J. Kim, Mater. Lett. (2005). https://doi.org/10.1016/j.matlet.2005.07.050

    Article  Google Scholar 

  25. R. Mazumder, D. Chakravarty, D. Bhattacharya, A. Sen, Mater. Res. Bull. (2009). https://doi.org/10.1016/j.materresbull.2008.07.017

    Article  Google Scholar 

  26. S. Rani, M. Shekhar, P. Kumar, S. Prasad, Appl. Phys. A (2022). https://doi.org/10.1007/s00339-022-06171-y

    Article  Google Scholar 

  27. X.Z. Chen, Z.C. Qiu, J.P. Zhou, G. Zhu, X.B. Bian, P. Liu, Mater. Chem. Phys. (2011). https://doi.org/10.1016/j.matchemphys.2011.01.027

    Article  Google Scholar 

  28. Z.X. Cheng, A.H. Li, X.L. Wang, S.X. Dou, K. Ozawa, H. Kimura, S.J. Zhang, T.R. Shrout, J. Appl. Phys. (2008). https://doi.org/10.1063/1.2839325

    Article  Google Scholar 

  29. Y. Dua, Z.X. Chenga, M. Shahbazia, E.W. Collingsb, S.X. Doua, X.L. Wanga, J. Alloys Compd. (2010). https://doi.org/10.1016/j.jallcom.2009.10.124

    Article  Google Scholar 

  30. M. Kumar, K.L. Yadav, J. Appl. Phys. (2006). https://doi.org/10.1063/1.2349491

    Article  Google Scholar 

  31. C.C. Lee, J.M. Wu, Solid-State Lett. (2007). https://doi.org/10.1149/1.2745123

    Article  Google Scholar 

  32. J. Wu, J. Wang, J. Am. Ceram. Soc. (2010). https://doi.org/10.1111/j.1551-2916.2010.03816.x

    Article  Google Scholar 

  33. Y.F. Cui, Y.G. Zhao, L.B. Luo, J.J. Yang, H. Chang, M.H. Zhu, T.L. Ren, D. Xie, Appl. Phys. Lett. (2010). https://doi.org/10.1063/1.3524225

    Article  Google Scholar 

  34. Reetu, A. Agarwal, S. Sanghi, Ashima, N. Ahlawat, J. Phys. D Appl. Phys. (2012). https://doi.org/10.1088/0022-3727/45/16/165001

    Article  Google Scholar 

  35. P. Kumar, M. Kar, J. Alloys Compd. (2014). https://doi.org/10.1016/j.jallcom.2013.09.107

    Article  Google Scholar 

  36. G.H. Jaffari, A. Samad, A.M. Iqbal, S. Hussain, A. Mumtaz, M.S. Awan, S.I. Shah, J. Alloys Compds (2015). https://doi.org/10.1016/j.jallcom.2015.05.065

    Article  Google Scholar 

  37. A.B.A. Hammad, H.S. Magar, A.M. Mansour, R.Y.A. Hassan, A.M.E. Nahrawy, Sci. Rep. (2023). https://doi.org/10.1038/s41598-023-36076-6

    Article  Google Scholar 

  38. A.L. Patterson, Phys. Rev. (1939). https://doi.org/10.1103/PhysRev.56.978

    Article  Google Scholar 

  39. A.K. Zak, W.A. Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. (2011). https://doi.org/10.1016/j.solidstatesciences.2010.11.024

    Article  Google Scholar 

  40. Y. Shahmoradi, D. Souri, M. Khorshidi, Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2018.12.133

    Article  Google Scholar 

  41. M. Abushad, W. Khan, S. Naseem, S. Husain, M. Naseem, A. Ansari, Ceram. Int. (2019). https://doi.org/10.1007/s42452-020-03669-z

    Article  Google Scholar 

  42. S. Irfan, L. Li, A.S. Saleemi, C.W. Nan, J. Mater. Chem. (2017). https://doi.org/10.1039/C7TA01847A

    Article  Google Scholar 

  43. G. Dhir, P. Uniyal, N.K. Verma, Physica B B (2018). https://doi.org/10.1016/j.physb.2017.12.004

    Article  Google Scholar 

  44. A.M. El Nahrawy, A.M. Bakr, B.A. Hemdan, A.B. Abou Hammad, Int. J. Environ. Sci. Technol. (2020). https://doi.org/10.1007/s13762-020-02786-x

    Article  Google Scholar 

  45. C.C. Qiu, Y.Y. Zhang, X.S. Lv, Y.G. Yang, L. Wei, H.J. Yu, J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03195-z

    Article  Google Scholar 

  46. G. Datt, A.C. Abhyankar, J. Appl. Phys. (2017). https://doi.org/10.1063/1.4990275

    Article  Google Scholar 

  47. Y.D. Kolekar, L.J. Sanchez, C.V. Ramana, J. Appl. Phys. (2014). https://doi.org/10.1063/1.4870232

    Article  Google Scholar 

  48. M. Gowrishankar, D.R. Babu, P. Saravanan, Mater. Lett. (2016). https://doi.org/10.1016/j.matlet.2016.02.044

    Article  Google Scholar 

  49. M.A. Dar, K. Majid, K.M. Batoo, R.K. Kotnala, J. Alloys Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.01.190

    Article  Google Scholar 

  50. M.H. Dhaou, S. Hcini, A. Mallah, M.L. Bouazizi, A. Jemni, Appl. Phys. (2017). https://doi.org/10.1007/s00339-016-0652-0

    Article  Google Scholar 

  51. Z.Z. Lazarevic, C. Jovalekic, D.L. Sekulic, A. Milutinovic, S. Balos, M. Slankamenac, N.Z. Romcevic, Mat. Res. Bull. (2013). https://doi.org/10.1016/j.materresbull.2013.07.012

    Article  Google Scholar 

  52. N. Sivakumar, A. Narayanasamy, C.N. Chinnasamy, B. Jeyadevan, J. Phys. Condens. MatterCondens. Matter (2007). https://doi.org/10.1088/0953-8984/19/38/386201

    Article  Google Scholar 

  53. A.B. Abou Hammad, A.G. Darwish, A.M. El Nahrawy, Appl. Phys. A (2020). https://doi.org/10.1007/s00339-020-03679-z

    Article  Google Scholar 

  54. C. Behera, P.R. Das, R.N.P. Choudhary, J. Electron. Mater. (2014). https://doi.org/10.1007/s11664-014-3216-0

    Article  Google Scholar 

  55. D.K. Pradhan, P. Misra, S.V. Puli, S. Sahoo, J. Appl. Phys. (2014). https://doi.org/10.1063/1.4885420

    Article  Google Scholar 

  56. R. Nongjai, S. Khan, K. Asokan, H. Ahmed, I. Khan, J. Appl. Phys. (2012). https://doi.org/10.1063/1.4759436

    Article  Google Scholar 

  57. A.U. Rahman, M.A. Rafiq, S. Karim, K. Maaz, M. Siddique, M.M. Hasan, J. Phys. D Appl. Phys. (2011). https://doi.org/10.1088/0022-3727/44/16/165404

    Article  Google Scholar 

  58. E. Markiewicz, B. Hilczer, M. Błaszyk, J. Electroceram.Electroceram. (2011). https://doi.org/10.1007/s10832-011-9660-9

    Article  Google Scholar 

  59. A.B. Abou Hammad, A.M. Mansour, A.M. El Nahrawy, Phys. Scr. (2021). https://doi.org/10.1088/1402-4896/ac25a6

    Article  Google Scholar 

  60. A.M. El Nahrawy, A.I. Ali, A.M. Mansour, A.B. Abou Hammad, B.A. Hemdan, S. Kamel, Carbohydr. Polym.. Polym. (2022). https://doi.org/10.1016/j.carbpol.2022.119656

    Article  Google Scholar 

  61. K.S.A. Kumar, R.N. Bhowmik, Mater. Res. Exp. (2017). https://doi.org/10.1088/2053-1591/aa9d4a

    Article  Google Scholar 

  62. Z.Z. Lazarevi, Jovaleki, A. Milutinovi, D. Sekuli, V.N. Ivanovski, A. Renik, B. Ceki, N.Z. Romevi, J. Appl. Phys. Appl. Phys. (2012). https://doi.org/10.1109/isaf.2012.6297730

    Article  Google Scholar 

  63. K. Vasundhara, S.N. Achary, S.K. Deshpande, P.D. Babu, S.S. Meena, J. Appl. Phys. (2013). https://doi.org/10.1063/1.4804946

    Article  Google Scholar 

  64. W. Chen, W. Zhu, O.K. Tan, X.F. Chen, J. Appl. Phys. (2010). https://doi.org/10.1063/1.3457217

    Article  Google Scholar 

  65. K. Rajulu, V. Ch, B. Tilak, K.S. Rao, Appl. Phys. (2012). https://doi.org/10.1007/s00339-011-6631-6

    Article  Google Scholar 

  66. A.I. Ali, B.A. Hemdan, A.M. Mansour, A.B. Abou Hammad, S. Kamel, A.M. El Nahrawy, Cellulose (2023). https://doi.org/10.1007/s10570-023-05416-0

    Article  Google Scholar 

  67. Y. Zhou, X. Huang, L. Jiang, Y. Hou, H. Lin, Z. Cheng, D. Sun, J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-09251-0

    Article  Google Scholar 

  68. S. Sharma, K. Shamim, A. Ranjan, R. Rai, P. Kumari, S. Sinha, Ceram. Int. (2015). https://doi.org/10.1016/j.ceramint.2015.02.102

    Article  Google Scholar 

  69. M. Zulqarnain, S.S. Ali, U. Hira, J.F. Feng, M.I. Khan, M. Rizwan, K. Javed, D.G. Farid, M.S. Hasan, J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2021.162431

    Article  Google Scholar 

  70. R. Schmidt, S. Pandey, P. Fiorenza, D.C. Sinclair, RSC Adv. (2013). https://doi.org/10.1039/c3ra41319e

    Article  Google Scholar 

  71. A.B. AbouHammad, A.M. Bakr, M.S. Abdel-Aziz, A.M. El Nahrawy, J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03323-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge IIT Patna and Mahatma Gandhi Central University, Bihar for extending experimental facilities.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study, conception and design. Material preparation, data collection, analysis and manuscript writing were performed by Mukesh Shekhar, Amod Kumar and Sonu Rani. Supervision and review were done by Lawrence Kumar and Pawan Kumar. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pawan Kumar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekhar, M., Kumar, A., Rani, S. et al. A study on temperature dependent dielectric relaxation behaviour and conduction mechanism of La and Ti co-doped bismuth ferrite. Appl. Phys. A 130, 237 (2024). https://doi.org/10.1007/s00339-024-07383-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07383-0

Keywords

Navigation