Skip to main content
Log in

Exploring the ferroelectric effect of nanocrystalline strontium zinc titanate/Cu: Raman and antimicrobial activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocrystalline strontium zinc titanate/copper nanoparticle (SZT/Cu) with tetragonal phase was prepared by the acidic sol–gel route and calcined at 700 °C. The phase formation, morphology, and spectroscopic properties of the (SZT/Cu) were investigated via the X-ray diffraction (XRD), field emission scanning electron spectroscopy (FE-SEM), and Raman spectroscopy. Raman spectra reflected the internal rearrangement in the internal structure of strontium zinc titanate (SZT) under the effect of Cu. The dielectric properties of SZT/Cu were investigated over a wide frequency range from 4 Hz to 8 MHz at different temperatures. A ferroelectric behavior with a diffuse phase transition is observed in the behavior of the dielectric constant against temperature. The observed Curie temperature is in the range (40 to 50 °C) with a diffuseness coefficient (α) range from (1.12 to 1.49). The antimicrobial activities of the three prepared samples exhibited antimicrobial activities against Staphylococcus aureus (G+ve bacterium), Escherichia coli (G−ve bacterium), Candida albicans (yeast), and Aspergillus niger (fungus). Strontium zinc titanate doped with 6 mol% of Cu showed higher antimicrobial activities more than the rest samples with inhibition zones of 36, 30, 43 and 47 mm for S. aureus, E. coli, C. albicans, and A. niger, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Ozturk, G.S.P. Soylu, Ceram. Int. 42, 11184 (2016)

    Article  CAS  Google Scholar 

  2. A.M. El Nahrawy, A.I. Ali, A.B. Abou Hammad, A. Mbarek, Egypt. J. Chem. 61, 1073 (2018)

    Google Scholar 

  3. A.M. El Nahrawy, B.A. Hemdan, A.B. Abou Hammad, A.L.K. Abia, A.M. Bakr, Silicon (2019). https://doi.org/10.1007/s12633-019-00326-y

    Article  Google Scholar 

  4. A. Sahu, R. Chaurashiya, K. Hiremath, A. Dixit, Sol. Energy 163, 338 (2018)

    Article  CAS  Google Scholar 

  5. S. Bhattacharya, I. Saha, A. Mukhopadhyay, D. Chattopadhyay, U. Chand, Int. J. Chem. Sci. Technol. 3, 59 (2013)

    Google Scholar 

  6. H.T. Kim, J.D. Byun, Y. Kim, Mater. Res. Bull. 33, 975 (1998)

    Article  CAS  Google Scholar 

  7. Q.L. Zhang, H. Yang, J.L. Zou, H.P. Wang, Mater. Lett. 59, 880 (2005)

    Article  CAS  Google Scholar 

  8. L. Hou, Y.D. Hou, M.K. Zhu, J. Tang, J.B. Liu, H. Wang, H. Yan, Mater. Lett. 59, 197 (2005)

    Article  CAS  Google Scholar 

  9. Y.-H. Yu, M. Xia, Mater. Lett. 77, 10 (2012)

    Article  CAS  Google Scholar 

  10. Y.-L. Chai, Y.-S. Chang, G.-J. Chen, Y.-J. Hsiao, Mater. Res. Bull. 43, 1066 (2008)

    Article  CAS  Google Scholar 

  11. N. Pal, M. Paul, A. Bhaumik, Appl. Catal. A 393, 153 (2011)

    Article  CAS  Google Scholar 

  12. A. Stoyanova, M. Sredkova, A. Bachvarova-Nedelcheva, R. Iordanova, Y. Dimitriev, H. Hitkova, T.Z. Iliev, Optoelectron. Adv. Mater. Rapid Commun. 4, 2059 (2010)

    CAS  Google Scholar 

  13. E. Koufakis, G.N. Mathioudakis, A.C. Patsidis, G.C. Psarras, Polym. Test. 77, 105870 (2019)

    Article  Google Scholar 

  14. J. Parthenios, G.C. Psarras, C. Galiotis, Compos. Part A: Appl. Sci. Manuf. 32, 1735 (2001)

    Article  Google Scholar 

  15. A.M. El Nahrawy, A.M. Mansour, H.A. ElAttar, E.M.M. Sakr, A.A. Soliman, A.B.A. Hammad, J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03176-2

    Article  Google Scholar 

  16. M.S. Abdel-Aziz, M.S. Shaheen, A.A. El-Nekeety, M.A. Abdel-Wahhab, J. Saudi Chem. Soc. 18, 356 (2014)

    Article  Google Scholar 

  17. B.A. Hemdan, A.M. El Nahrawy, A.F.M. Mansour, A.B.A. Hammad, Environ. Sci. Pollut. Res. 26, 9508 (2019)

    Article  CAS  Google Scholar 

  18. I. Untea, M. Dancila, E. Vasile, M. Belcu, Powder Technol. 191, 27 (2009)

    Article  CAS  Google Scholar 

  19. D. Wongratanaphisan, T. Santhaveesuk, S. Choopun, in Proceedings of the 3rd International Nanoelectronics Conference (INEC) (IEEE, 2010), pp. 250–251

  20. D. Wongratanaphisan, T. Santhaveesuk, S. Choopun, Integr. Ferroelectr. 142, 37 (2013)

    Article  CAS  Google Scholar 

  21. L. Li, S. Gao, T. Cui, B. Li, Q. Zhou, H. Yuan, D. Xu, RSC Adv. 7, 35477 (2017)

    Article  CAS  Google Scholar 

  22. I.M. Hodge, K.L. Ngai, C.T. Moynihan, J. Non-Cryst. Solids 351, 104 (2005)

    Article  CAS  Google Scholar 

  23. D.L. Rousseau, R.P. Bauman, S.P.S. Porto, J. Raman Spectrosc. 10, 253 (1981)

    Article  CAS  Google Scholar 

  24. N. Kolev, R.P. Bontchev, A.J. Jacobson, V.N. Popov, V.G. Hadjiev, A.P. Litvinchuk, M.N. Iliev, Phys. Rev. B 66, 132102 (2002)

    Article  Google Scholar 

  25. J. Mohammed, T.T. Carol, T.H.Y. Hafeez, B.I. Adamu, Y.S. Wudil, Z.I. Takai, S.K. Godara, A.K. Srivastava, J. Phys. Chem. Solids 126, 85 (2019)

    Article  CAS  Google Scholar 

  26. A. Boontum, D. Phokharatkul, J.H. Hodak, A. Wisitsoraat, S.K. Hodak, Sens. Actuators B Chem. 260, 877 (2018)

    Article  CAS  Google Scholar 

  27. J. Deng, L. Liu, X. Sun, S. Liu, T. Yan, L. Fang, B. Elouadi, Mater. Res. Bull. 88, 320 (2017)

    Article  CAS  Google Scholar 

  28. K. Uchino, S. Nomura, Ferroelectrics 44, 55 (1982)

    Article  CAS  Google Scholar 

  29. A. Durán, J.M. Jiménez, M. Solórzano, R. Falconi, J. Phys. Chem. Solids 123, 228 (2018)

    Article  Google Scholar 

  30. S.E.L. Kossi, C. Rayssi, A.H. Dhahri, J. Dhahri, K. Khirouni, J. Alloys Compd. 767, 456 (2018)

    Article  CAS  Google Scholar 

  31. S. Rani, N. Ahlawat, R. Punia, K.M. Sangwan, S. Rani, Ceram. Int. 44, 5996 (2018)

    Article  CAS  Google Scholar 

  32. R. Richert, Solid State Ionics 105, 167 (1998)

    Article  CAS  Google Scholar 

  33. S. Praharaj, V. Subramanian, S.-J.L. Kang, D. Rout, Mater. Res. Bull. 106, 459 (2018)

    Article  CAS  Google Scholar 

  34. Y.-S. Chang, Y.-H. Chang, I.-G. Chen, G.-J. Chen, Solid State Commun. 128, 203 (2003)

    Article  CAS  Google Scholar 

  35. V. Purohit, R. Padhee, R.N.P. Choudhary, Ceram. Int. 44, 3993 (2018)

    Article  CAS  Google Scholar 

  36. A. Salhi, S. Sayouri, A. Alimoussa, L. Kadira, Mater. Today Proc. 13, 1248 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the help and support of the Science and Technology Development Fund (STDF), Egypt, for financial support, Project ID 25776.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amany M. El Nahrawy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abou Hammad, A.B., Bakr, A.M., Abdel-Aziz, M.S. et al. Exploring the ferroelectric effect of nanocrystalline strontium zinc titanate/Cu: Raman and antimicrobial activity. J Mater Sci: Mater Electron 31, 7850–7861 (2020). https://doi.org/10.1007/s10854-020-03323-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03323-9

Navigation