Skip to main content
Log in

Impedance spectroscopy, pyroelectric and electrocaloric response of sol gel synthesized 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Polycrystalline 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 (BNT–6BT) is synthesized by sol–gel method. Coexistence of rhombohedral and tetragonal phases is evidenced by X-ray diffraction studies and RAMAN spectroscopy. The dielectric properties were studied in a wide frequency range from room temperature to 425 °C. A broad anomaly at Tm which is found to be frequency dependent indicates the conversion of macroscopic polarization domains into microscopic polar active region. The pyroelectric and electrocaloric response is studied via polarization–electric field (PE loops) measured at various temperatures ranging from room temperature upto 150 °C. The pyroelectric coefficient, p is found to be 3.02 × 10–4 C/m2 K near to room temperature (30 °C). The figures of merit are Fi is 113 pm/V, Fv is 0.046 m2/C, Fe is 37 J/m3 K2, Fe* is 5.2 pm3/J and Fd is 4.8 μPa−0.5. An electrocaloric temperature change (∆T) of 0.44 K is observed at 80°C for 55 kV/cm.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a
Fig. 2
Fig. 3
Fig. 4a
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data used in this study are available from the corresponding author on reasonable request.

References

  1. H. Zhang, W. Tian, Q. Zhang, W. Ma, P. Fan, D. Salamon, S. Zhang, B. Nan, H. Tan, Z. Ye, Review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J. Mater. Chem. C 47, 16648–16667 (2020). https://doi.org/10.1039/D0TC04381H

    Article  Google Scholar 

  2. I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89(7), 2063–2072 (2006). https://doi.org/10.1111/j.1551-2916.2006.01025.x

    Article  Google Scholar 

  3. M. Valant, Electrocaloric materials for future solid-state refrigeration technologies. Prog. Mater. Sci. 57, 980–1009 (2012). https://doi.org/10.1016/j.pmatsci.2012.02.001

    Article  Google Scholar 

  4. R.W. Whatmore, Pyroelectric devices and materials. Rep. Prog. Phys. 49, 1335–1386 (1986). https://doi.org/10.1088/0034-4885/49/12/002

    Article  ADS  Google Scholar 

  5. R.W. Whatmore, S.J. Ward, Pyroelectric infrared detectors and materials—a critical perspective. J. Appl. Phys. 133, 080902 (2023). https://doi.org/10.1063/5.0141044

    Article  ADS  Google Scholar 

  6. B. Parija, S. Panigrahi, Impedance and AC conductivity study of (Bi0.5Na0.5)TiO3–Ba(Zr0.25Ti0.75)O3 lead-free ceramics. Ferroelectr. Lett. Sect. 39, 38–55 (2012). https://doi.org/10.1080/07315171.2012.707047

    Article  ADS  Google Scholar 

  7. Z. Yang, B. Liu, L. Wei, Y. Hou, Structure and electrical properties of (1 − x)Bi0.5Na0.5TiO3–xBi0.5K0.5TiO3 ceramics near morphotropic phase boundary. Mater. Res. Bull. 43, 81–89 (2008). https://doi.org/10.1016/j.materresbull.2007.02.016

    Article  Google Scholar 

  8. P. Palei, Sonia, P. Kumar, Dielectric, ferroelectric and piezoelectric properties of (1 − x)[K0.5Na0.5NbO3]–x[LiSbO3] ceramics. J. Phys. Chem. Solids 73, 827–833 (2012). https://doi.org/10.1016/j.jpcs.2012.02.008

  9. Z. Liu, W. Ren, P. Peng, S. Guo, T. Lu, Y. Liu, X. Dong, G. Wang, High performance Bi0.5Na0.5TiO3–BiAlO3–K0.5Na0.5NbO3 lead-free pyroelectric ceramics for thermal detectors. Appl. Phys. Lett. 112, 142903 (2018). https://doi.org/10.1063/1.5020424

    Article  ADS  Google Scholar 

  10. F. Gao, X. Dong, C. Mao, H. Zhang, F. Cao, G. Wang, Poling temperature tuned electric-field-induced ferroelectric to antiferroelectric phase transition in 0.89Bi0.5Na0.5TiO3–0.06BaTiO3–0.05K0.5Na0.5NbO3 ceramics. J. Appl. Phys. 110, 094109 (2011). https://doi.org/10.1063/1.3660283

    Article  ADS  Google Scholar 

  11. A. Kumar, A. Sharma, R. Kumar, R. Vaish, C.R. Bowen, Performance of K0.5Na0.5NbO3–LiSbO3–CaTiO3 ceramics in acoustic energy harvesting exposed to sound pressure. Ferroelectrics 504, 149–159 (2016). https://doi.org/10.1080/00150193.2016.1240569

    Article  ADS  Google Scholar 

  12. X. Pang, J. Qiu, K. Zhu, N. Dong, Phase transition behavior and temperature-stable piezoelectric properties of new quaternary (K,Na)NbO3 based ceramics. Ceram. Int. 39, 641–647 (2013). https://doi.org/10.1016/j.ceramint.2012.06.076

    Article  Google Scholar 

  13. J. Jia, S. Guo, S. Yan, F. Cao, C. Yao, X. Dong, G. Wang, Simultaneous large pyroelectric response and high depolarization temperature in sodium bismuth titanate-based perovskite. Appl. Phys. Lett. 114, 032902 (2019). https://doi.org/10.1016/1.5063318

    Article  ADS  Google Scholar 

  14. S. Uddin, G.-P. Zheng, Y. Iqbal, R. Ubic, J. Yang, Unification of the negative electrocaloric effect in Bi1/2Na1/2TiO3–BaTiO3 solid solutions by Ba1/2Sr1/2TiO3 doping. J. Appl. Phys. 114, 213519 (2013). https://doi.org/10.1063/1.4842935

    Article  ADS  Google Scholar 

  15. J. Glaum, Y. Heo, M. Acosta, P. Sharma, J. Seidel, M. Hinterstein, Revealing the role of local stress on the depolarization of BNT–BT-based relaxors. Phys. Rev. Mater. 3, 054406 (2019). https://doi.org/10.1103/PhysRevMaterials.3.054406

    Article  Google Scholar 

  16. H.S. Mohanty, T. Dam, H. Borkar, D.K. Pradhan, K.K. Mishra, A. Kumar, B. Sahoo, P.K. Kulriya, C. Cazorla, J.F. Scott, D.K. Pradhan, Structural transformations and physical properties of (1 − x)Na0.5Bi0.5TiO3–xBaTiO3 solid solutions near a morphotropic phase boundary. J. Phys. Condens. Matter 31, 075401 (2019). https://doi.org/10.1088/1361-648X/aaf405

    Article  ADS  Google Scholar 

  17. Y. Yang, R. Jing, J. Wang, L. Zhang, Y. Huang, L. Jin, Non stoichiometric effect on dielectric and large-signal electromechanical properties of environmentally friendly BNT-6BT ferroelectric ceramics. Ceram. Int. 48, 14329–14337 (2022). https://doi.org/10.1016/j.ceramint.2022.01.323

    Article  Google Scholar 

  18. R. Machado, V.B. dos Santos, D.A. Ochoa, E. Cerdeiras, L. Mestres, J.E. Garcia, Elastic, dielectric and electromechanical properties of (Bi0.5Na0.5)TiO3–BaTiO3 piezoceramics at the morphotropic phase boundary region. J. Alloys Compd. 690, 568–574 (2017). https://doi.org/10.1016/j.jallcom.2016.08.116

    Article  Google Scholar 

  19. A. Prado-Espinosa, J. Camargo, A. del Campo, F.R. Marcos, M. Castro, L. Ramajo, Exploring new methodologies for the identification of the morphotropic phase boundary region in the (BiNa)TiO3–BaTiO3 lead free piezoceramics: confocal Raman microscopy. J. Alloys Compd. 739, 799–805 (2018). https://doi.org/10.1016/j.jallcom.2017.12.308

    Article  Google Scholar 

  20. A. Pardo, L. Ramajo, J. Camargo, A.D. Campo, P. Ochsner, F. Rubio-Marcos, M. Castro, Stabilization of the morphotropic phase boundary in (1 − x)Bi0.5Na0.5TiO3–xBaTiO3 ceramics through two alternative synthesis pathways. J. Mater. Sci. Mater. Electron. 30, 18405–18412 (2019). https://doi.org/10.1007/s10854-019-02194-z

    Article  Google Scholar 

  21. H. Yu, Z.-G. Ye, Dielectric, ferroelectric, and piezoelectric properties of the lead-free (1 − x)(Na0.5Bi0.5)TiO3–xBiAlO3 solid solution. Appl. Phys. Lett. 93, 112902 (2008). https://doi.org/10.1063/1.2967335

    Article  ADS  Google Scholar 

  22. N. Truong-Tho, L.D. Vuong, Effect of sintering temperature on the dielectric, ferroelectric and energy storage properties of SnO2- doped Bi0.5(Na0.8K0.2)0.5TiO3 lead free ceramics. J. Adv. Dielectr. 10, 2050011 (2020). https://doi.org/10.1142/S2010135X20500113

    Article  ADS  Google Scholar 

  23. S.T. Lau, C.H. Cheng, S.H. Choy, D.M. Lin, K.W. Kwok, H.L.W. Chan, Lead-free ceramics for pyroelectric applications. J. Appl. Phys. 103, 104105 (2008). https://doi.org/10.1063/1.2927252

    Article  ADS  Google Scholar 

  24. S. Sahoo, S. Hajra, M. De, R.N.P. Choudhary, Resistive, capacitive and conducting properties of Bi0.5Na0.5TiO3–BaTiO3 solid solution. Ceram. Int. 44, 4719–4726 (2018). https://doi.org/10.1016/j.ceramint.2017.12.054

    Article  Google Scholar 

  25. S. Hajra, S. Sahoo, R. Das, R.N.P. Choudhary, Structural, dielectric and impedance characteristics of (Bi0.5Na0.5)TiO3–BaTiO3 electronic system. J. Alloys Compd. 750, 507–514 (2018). https://doi.org/10.1016/j.jallcom.2018.04.010

    Article  Google Scholar 

  26. D. Rout, K.-S. Moon, V. ShankarRao, S.-J.L. Kang, Study of the morphotropic phase boundary in the lead-free Na1/2Bi1/2TiO3–BaTiO3 system by Raman spectroscopy. J. Ceram. Soc. Jpn. 117, 797–800 (2009). https://doi.org/10.2109/jcersj2.117.797

    Article  Google Scholar 

  27. R. Garg, B.N. Rao, A. Senyshyn, P.S.R. Krishna, R. Ranjan, Lead-free piezoelectric system (Na0.5Bi0.5)TiO3–BaTiO3: equilibrium structure and irreversible structural transformations driven by electric field and mechanical impact. Phys. Rev. B 88, 014103 (2013). https://doi.org/10.1103/PhysRevB.88.014103

    Article  ADS  Google Scholar 

  28. J. Carter, E. Aksel, T. Iamsasri, J.S. Forrester, J. Chen, J.L. Jones, Structure and ferroelectricity of nonstoichiometric (Na0.5Bi0.5)TiO3. Appl. Phys. Lett. 104, 112904 (2014). https://doi.org/10.1063/1.4868109

    Article  ADS  Google Scholar 

  29. A. Nesterović, J. Vukmirović, I. Stijepović, M. Milanović, B. Bajac, E. Tóth, Ž Cvejić, V.V. Srdić, Structure and dielectric properties of (1 − x)Bi0.5Na0.5TiO3–xBaTiO3 piezoceramics prepared using hydrothermally synthesized powders. R. Soc. Open Sci. 8, 202365 (2021). https://doi.org/10.1098/rsos.202365

    Article  ADS  Google Scholar 

  30. K. Kaur, A. Gautam, N. Shakti, P. Uniyal, Structural, dielectric, impedance and modulus studies of lead-free (1 − x) Bi0.5Na0.5TiO3–xBaTiO3 (x = 0, 0.06, 0.08)-based ceramics. J. Mater. Sci. Mater. Electron. 33, 12281–12294 (2022). https://doi.org/10.1007/s10854-022-08187-9

    Article  Google Scholar 

  31. V.V. Shvartsman, D.C. Lupascu, Lead-free relaxor ferroelectrics. J. Am. Ceram. Soc. 95, 1–26 (2012). https://doi.org/10.1111/j.1551-2916.2011.04952.x

    Article  Google Scholar 

  32. B.K. Barick, R.N.P. Choudhary, D.K. Pradhan, Dielectric and impedance spectroscopy of zirconium modified (Na0.5Bi0.5)TiO3 ceramics. Ceram. Int. 39, 5695–5704 (2013). https://doi.org/10.1016/j.ceramint.2012.12.087

    Article  Google Scholar 

  33. Q. Xu, M.T. Lanagan, X. Huang, J. Xie, L. Zhang, H. Hao, H. Liu, Dielectric behavior and impedance spectroscopy in lead-free BNT–BT–NBN perovskite ceramics for energy storage. Ceram. Int. 42, 9728–9736 (2016). https://doi.org/10.1016/j.ceramint.2016.03.062

    Article  Google Scholar 

  34. Z. Raddaoui, S. El Kossi, J. Dhahri, N. Abdelmoula, K. Taibi, Study of diffuse phase transition and relaxor ferroelectric behaviour of Ba0.97Bi0.02Ti0.9Zr0.05Nb0.04O3 ceramics. RSC Adv. 9, 2412–2425 (2019). https://doi.org/10.1039/C8RA08910H

    Article  ADS  Google Scholar 

  35. M. Chandrasekhar, D.K. Khatua, R. Pattanayak, P. Kumar, Dielectric relaxation and conduction mechanism studies of BNT–BT–BKT ceramics. J. Phys. Chem. Solids 111, 160–166 (2017). https://doi.org/10.1016/j.jpcs.2017.07.029

    Article  ADS  Google Scholar 

  36. S. Praharaj, D. Rout, S. Anwar, V. Subramanian, Polar nano regions in lead free (Na0.5Bi0.5)TiO3–SrTiO3–BaTiO3 relaxors: an impedance spectroscopic study. J. Alloys Compd. 706, 502–510 (2017). https://doi.org/10.1016/j.jallcom.2017.02.257

    Article  Google Scholar 

  37. J.T.S. Irvine, D.C. Sinclair, A.R. West, Electroceramics: characterization by impedance spectroscopy. Adv. Mater. 2, 132–138 (1990). https://doi.org/10.1002/adma.19900020304

    Article  Google Scholar 

  38. D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66, 3850–3856 (1989). https://doi.org/10.1063/1.344049

    Article  ADS  Google Scholar 

  39. S. Hajra, S. Sahoo, M. De, P.K. Rout, H.S. Tewari, R.N.P. Choudhary, Structural, electrical characteristics of (Bi0.49Na0.49 Ba0.02)TiO3. J. Mater. Sci. Mater. Electron. 29, 1463–1472 (2018). https://doi.org/10.1007/s10854-017-8054-4

    Article  Google Scholar 

  40. S. Pattanayak, B.N. Parida, P.R. Das, R.N.P. Choudhary, Impedance spectroscopy of Gd-doped BiFeO3 multiferroics. Appl. Phys. A 112, 387–395 (2013). https://doi.org/10.1007/s00339-012-7412-6

    Article  ADS  Google Scholar 

  41. O. Raymond, R. Font, N. Suarez-Almodovar, J. Portelles, J.M. Siqueiros, Frequency-temperature response of ferroelectromagnetic Pb(Fe1/2Nb1/2)O3 ceramics obtained by different precursors. Part I. Structural and thermo-electrical characterization. J. Appl. Phys. 97, 084107 (2005). https://doi.org/10.1063/1.1870099

    Article  ADS  Google Scholar 

  42. B.K. Barick, K.K. Mishra, A.K. Arora, R.N.P. Choudhary, D.K. Pradhan, Impedance and Raman spectroscopic studies of (Na0.5Bi0.5)TiO3. J. Phys. D. Appl. Phys. 44, 355402 (2011). https://doi.org/10.1088/0022-3727/44/35/355402

    Article  Google Scholar 

  43. M.A. Rafiq, A. Tkach, M.E. Costa, P.M. Vilarinho, Defects and charge transport in Mn doped K0.5Na0.5NbO3 ceramics. Phys. Chem. Chem. Phys. 17, 24403 (2015). https://doi.org/10.1039/c5cp02883c

    Article  Google Scholar 

  44. I.-W. Chen, Y. Wang, A domain model for relaxor ferroelectrics. Ferroelectrics 206, 245–263 (1998). https://doi.org/10.1080/00150199808009162

    Article  ADS  Google Scholar 

  45. Y. Poplavko, Y. Yakimenko, Functional Dielectrics for Electronics, 1st edn. (Woodhead Publishing, Sawston, 2020), p.131. https://doi.org/10.1016/B978-0-12-818835-4.00004-3

    Book  Google Scholar 

  46. X. Li, S.-G. Lu, X.-Z. Chen, H. Gu, X.-S. Qian, Q.M. Zhang, Pyroelectric and electrocaloric materials. J. Mater. Chem. C. 1, 23 (2013). https://doi.org/10.1039/C2TC00283C

    Article  ADS  Google Scholar 

  47. S. Patel, A. Chauhan, S. Kundu, N.A. Madhar, B. Ilahi, R. Vaish, K.B.R. Varma, Tuning of dielectric, pyroelectric and ferroelectric properties of 0.715Bi0.5Na0.5TiO3–0.065BaTiO3–0.22SrTiO3 ceramic by internal clamping. AIP Adv. 5, 087145 (2015). https://doi.org/10.1063/1.4929328

    Article  ADS  Google Scholar 

  48. Y. Bai, G.-P. Zhang, S.-Q. Shi, Abnormal electrocaloric effect of Na0.5Bi0.5TiO3–BaTiO3 lead free ferroelectric ceramics above room temperature. Mater. Res. Bull. 46, 1866–1869 (2011). https://doi.org/10.1016/j.materresbull.2011.07.038

    Article  Google Scholar 

  49. A.M. Balakt, C.P. Shaw, Q. Zhang, Enhancement of pyroelectric properties of lead-free 0.94Bi0.5Na0.5NbO3–0.06BaTiO3 ceramics by La doping. J. Eur. Ceram. Soc. 37, 1459–1466 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.12.021

    Article  Google Scholar 

  50. S. Patel, M. Kumar, Influence of grain size on the electrocaloric and pyroelectric properties in non-reducible BaTiO3 ceramics. AIP Adv. 10, 085302 (2020). https://doi.org/10.1063/5.0017348

    Article  ADS  Google Scholar 

  51. S.B. Lang, Pyroelectricity: from ancient curiosity to modern imaging tool. Phys. Today. 58(8), 31–36 (2005). https://doi.org/10.1063/1.2062916

    Article  Google Scholar 

  52. K.S. Srikanth, S. Patel, R. Vaish, Pyroelectric performance of BaTi1xSnxO3 ceramics. Int. J. Appl. Ceram. Technol. 15, 546–553 (2018). https://doi.org/10.1111/ijac.12814

    Article  Google Scholar 

  53. K.S. Srikanth, R. Vaish, Enhanced electrocaloric, pyroelectric and energy storage performance of BaCexTi1xO3 ceramics. J. Eur. Ceram. Soc. 37, 3927–3933 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.04.058

    Article  Google Scholar 

Download references

Funding

This work is done under the financial support (03(1390)/16/EMR-II) of Council of Scientific and Industrial Research (CSIR), India. One of the author, Ajeet Kumar would like to acknowledge the Department of Science and Technology-Science and Engineering Research Board, Govt. of India (SPG/202l/004250-C), India. Authors are also grateful to DST-FIST research grant for the XRD, RAMAN and ferroelectric measurements facilities.

Author information

Authors and Affiliations

Authors

Contributions

AK: methodology, validation, formal analysis writing—original draft. NJ: data curation, validation, formal analysis writing—original draft, AG: validation, formal analysis, writing—review and editing. SD: validation, formal analysis, KDK: sample preparation. PU: validation, formal analysis, writing—review and editing, supervision.

Corresponding author

Correspondence to Poonam Uniyal.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Jaglan, N., Gautam, A. et al. Impedance spectroscopy, pyroelectric and electrocaloric response of sol gel synthesized 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics. Appl. Phys. A 129, 722 (2023). https://doi.org/10.1007/s00339-023-06990-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06990-7

Keywords

Navigation