Skip to main content
Log in

Impedance analysis and modulus behavior of Ca0.85Er0.1Ti(1−x)Co4x/3O3 (x = 0.15 and 0.20) ceramic prepared by sol–gel reaction

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report here the complex impedance and complex modulus analysis of the polycrystalline perovskite structure Ca0.85Er0.1Ti(1-x)Co4x/3O3 (x = 0.15 and 0.20) ceramic prepared by the sol–gel reaction technology. The X-ray diffraction pattern of the specimen confirmed the formation of perovskite pure phases structure. The impedance spectroscopy and electrical modulus have been used as tools to investigate the mechanism of conduction that occurs inside materials. These investigations are performed versus frequencies [100–107 Hz] at different temperatures [460–620 K]. The Nyquist plots indicate the existence of grains, grain boundaries and electrodes. The semicircular arc displayed in the Z″ vs Z′ curve indicates that three blocks of resistor and a constant phase element (CPE) are linked in series in the network causing a decrease in the relaxation time. For the two samples, the frequency dependence of the imaginary part of impedance (Z″) shows the existence of a relaxation phenomenon. The complex electrical modulus (CEM) spectrum measurement of Ca0.85Er0.1Ti(1−x)Co4x/3O3 (x = 0.15 and 0.20) material was performed for analysis and explain the dynamic aspects of electrical transport phenomena (for example: Blocking factor, carrier hopping rate and electrical conductivity). The CEM curve showed the effects of grains and grain-boundaries on electrical properties. The complex modulus M*(u) confirmed that the relaxation process is thermally activated. The normalized imaginary part of the modulus M′′/Mmax shows that the relaxation process is mainly determined by the short-range motion of charge carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E.J. Abram, D.C. Sinclair, A.R. West, J. Electroceram. 10, 165–177 (2003)

    Google Scholar 

  2. B. Garbarz-Glos, W. Bąk, M. Antonova, M. Pawlik, Mater. Sci. Eng. 49, 012031 (2013)

    Google Scholar 

  3. E. Abram, D. Sinclair, A. West, J. Electroceram. 10(3), 165–177 (2003)

    Google Scholar 

  4. M. Li, A. Feteira, D. Sinclair, J. Appl. Phys. 98(8), 084101–084106 (2005)

    ADS  Google Scholar 

  5. B.H. Venkataraman, K.B.R. Varma, J. Mater. Sci. Mater. Electron. 16, 335 (2005)

    Google Scholar 

  6. M. Andres-Verges, A.R.J. West, Electroceramics 1, 125 (1997)

    Google Scholar 

  7. A.M. Nawar, H.M. Abd El-Khalek, M.M. El-Nahass, Org. Opto-Elect. 1, 25 (2015)

    Google Scholar 

  8. A.K. Roy, K. Prasad, A. Prasad, Piezoelectric. Process. Appl. Ceram. 7, 81 (2013)

    Google Scholar 

  9. M.B. Hossen, M.A.J. Hossain, Adv. Ceram. 4, 217 (2015)

    Google Scholar 

  10. K. Prasad, K. Kumari, K.P. Lily, K.L. Chandra, Adv. Appl. Ceram. 106, 241–246 (2007)

    Google Scholar 

  11. Ch. Rayssi, F.I.H. Rhouma, J. Dhahri, K. Khirouni, M. Zaidi, H. Belmabrouk, Appl. Phys. A Mater. Sci. Process. 123, 778 (2017)

    ADS  Google Scholar 

  12. Ch. Rayssi, S. El Kossi, J. Dhahri, K. Khirouni, J Alloys Compd. 759, 93–99 (2018)

    Google Scholar 

  13. M. Sindhu, N. Ahlawat, S. Sanghi, A. Agarwal, R. Dahiya, N. Ahlawat, Curr. Appl. Phys. 12, 1429–1435 (2012)

    ADS  Google Scholar 

  14. I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. 58, 429–432 (1975)

    Google Scholar 

  15. A. Abkari, I. Chaabane, K. Guidara, Phys. E 83, 119–126 (2016)

    Google Scholar 

  16. M.M. Costa, G.F.M. Pires Jr., A.J. Terezo, M.P.F. Grac, A.S.B. Sombra, J. Appl. Phys. 110, 034107 (2011)

    ADS  Google Scholar 

  17. S.K. Dehury, P. Achary, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 29, 3682–3689 (2018)

    Google Scholar 

  18. A. Kumar, B.P. Singh, R.N.P. Choudhary, A.K. Thakur, J. Alloys Compd. 394, 292 (2005)

    Google Scholar 

  19. P. Khatri, B. Behera, V. Srinivas, R.N.P. Choudhary, Complex impedance spectroscopic properties of Ba3V2O8 ceramics. Res. Lett. Mater. Sci. (2008). https://doi.org/10.1155/2008/746256

    Article  Google Scholar 

  20. G.N. Bhargavi, A. Khare, T. Badapanda, M.S. Anwar, N. Brahme, J. Mater. Sci. Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-7617-8

    Article  Google Scholar 

  21. J.R. Macdonald, W.B. Johnson, Fundamentals of impedance spectroscopy, in Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd edn. (Wiley, Newark, 2005), pp. 1–26

    Google Scholar 

  22. B. Tiwari, R.N.P. Choudhary, J. Phys. Chem. Solids 69(11), 2852–2857 (2008)

    ADS  Google Scholar 

  23. J.L. Cohn, M. Peterca, J.J. Neumeier, J. Appl. Phys. 97, 034102 (2005)

    ADS  Google Scholar 

  24. H. Rahmouni, A. Selmi, K. Khirouni, N. Kallel, J. Alloys Compd. 533, 93–96 (2012)

    Google Scholar 

  25. B.C. Sutar, R.N.P. Choudhary, Piyush R. Das. Cer. Inter. 40, 7791–7798 (2014)

    Google Scholar 

  26. K. Lily, K. Kumari, R.N.P. Prasad, Choudhary. J. Alloys Compd. 453, 325 (2008)

    Google Scholar 

  27. A. Elbasset, F. Abdi, T. Lamcharfi, S. Sayouri, L.H. Omari, P. Bourson, A. Salhi, A. Elghandouri, Int. Rev. Phys. 8(5), 141–149 (2014)

    Google Scholar 

  28. P.S. Das, P.K. Chakraborty, B. Behera, R.N.P. Choudhary, Phys. B 395, 98–103 (2007)

    ADS  Google Scholar 

  29. P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171 (1972)

    Google Scholar 

  30. M. Ganguly, M. Harish Bhat, K.J. Rao, Phys. Chem. Glasses 40, 297–304 (1999)

    Google Scholar 

  31. S. Ghosh, A. Ghosh, Solid State Ionics 149, 67–72 (2002)

    Google Scholar 

  32. S. Lanfredi, P.S. Saia, R. Lebullenger, A.C. Hernandes, Solid State Ionics 146, 329–339 (2002)

    Google Scholar 

  33. W. Shen, Ou. Tianji, J. Wang, T. Qin, G. Zhang, X. Zhang, Y. Han, Y. Ma, C. Gao, Sci. Rep. 8, 5086 (2018)

    ADS  Google Scholar 

  34. M. Mumtaz, M. Naveed, S. Akhtar, M. Imran, M.N. Khan, J. Superconduct. Novel Magn. (2018). https://doi.org/10.1007/s10948-017-4547-x

    Article  Google Scholar 

  35. S. Praharaj, D. Rout, J. Phys. Chem. Solids 127, 52–59 (2019)

    ADS  Google Scholar 

  36. S.T. Assar, H.F. Abosheiasha, M.K. El Nimr, J. Magn. Magn. Mater. 350, 12–18 (2014)

    ADS  Google Scholar 

  37. M. Hashim, S. Kumar, S. Ali, B.H. Koo, H. Chung, Ravi Kumar. J. Alloys Compd. 511, 107–114 (2012)

    Google Scholar 

  38. Ch. Rayssi, S. El Kossi, J. Dhahri, K. Khirouni, RSC Adv. 8, 7139–17150 (2018)

    Google Scholar 

  39. M.M. Costa, G.F.M.J. Pires, A.J. Terezo, M.P.F. Graca, A.S.B. Sombra, J. Appl. Phys. 110, 034107 (2011)

    ADS  Google Scholar 

  40. R. Schmidt, S. Pandey, P. Fiorenza, D.C. Sinclair, RSC Adv. 3, 14580–14589 (2013)

    ADS  Google Scholar 

  41. A. Sinha, A. Dutta, RSC Adv. 5, 100330–100338 (2015)

    ADS  Google Scholar 

  42. R. Jacob, H.G. Nair, J. Isac, Proc. Appl. Ceram. 9(2), 73–79 (2015)

    Google Scholar 

  43. C.B. Mohamed, K. Karoui, S. Saidi, K. Guidara, A.B. Rhaiem, Phys. B 451, 87 (2014)

    ADS  Google Scholar 

  44. M.P. Dasari, K.S. Rao, P.M. Krishna, G.G. Krishna, ACTA Phys. Ca Polonica A 119, 387–394 (2011)

    ADS  Google Scholar 

  45. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3858 (1989)

    ADS  Google Scholar 

  46. C.C. Silva, A.S.B. Sombra, Mater. Sci. Appl. 2, 1349 (2011)

    Google Scholar 

  47. M. Jebli, Ch. Rayssi, N. Hamdaoui, S. Rabaoui, J. Dhahri, M. Ben Henda, I. Shaarany, J. Alloys Compd. 784, 204–212 (2019)

    Google Scholar 

  48. S.K. Rout, S. Parida, E. Sinha, P.K. Barhai, I.W. Kim, Curr. Appl. Phys. 10, 917 (2010)

    ADS  Google Scholar 

  49. R.K.C. Varada, B. Tilak, S.K. Rao, Appl. Phys. A 106, 533–543 (2012)

    ADS  Google Scholar 

  50. A. Shukla, R.N. Choudhary, A. Thakur, J. Mater. Sci. Mater. Electron. 20, 745–755 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Rayssi.

Ethics declarations

Conflict of interest

The authors (Ch. Rayssi et al.) declare that there are no conflicts of interest regarding this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rayssi, C., Jebli, M., Bouzidi, S. et al. Impedance analysis and modulus behavior of Ca0.85Er0.1Ti(1−x)Co4x/3O3 (x = 0.15 and 0.20) ceramic prepared by sol–gel reaction. Appl. Phys. A 128, 435 (2022). https://doi.org/10.1007/s00339-022-05587-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05587-w

Keywords

Navigation