Skip to main content
Log in

Analysis of electrical properties using complex impedance spectroscopy in solid solutions (PbTiO3)0.97-(LaFeO3)0.03 prepared by sol-gel technique

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The AC complex impedance spectroscopy technique was utilized to extract electrical parameters in (PbTiO3)0.97-(LaFeO3)0.03 ceramic in wide ranges of frequencies and temperatures. The sample was prepared by sol-gel process and the single phase was confirmed using x-ray diffraction. The compound exhibits high dielectric constant (εr max ~ 6050) for 1 kHz and low dielectric losses (tanδ < 0.1), diffuse phase transition at Curie temperature of 373 °C, and relaxer behavior. Simultaneous analysis of impedance, modulus, and electrical conductivity was performed. Complex impedance plots show semicircular arcs described by an electrical equivalent circuit which was proposed to explain the impedance results. Off-centered semicircular impedance plots show that the sample obeys to a non-Debye relaxation process. The decrease of resistance, with increasing temperature, indicates a negative temperature coefficient of resistance. Both activation energies, calculated from the conductivity 0.588 eV and the relaxation time 0.49 eV, were comparable highlighting that the relaxation process and conductivity have the same origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Gupta, D. Singh, R.K. Singh, K.K. Bamzai, J. Electroceram. 40, 235–246 (2018)

    CAS  Google Scholar 

  2. Q. Zhou, K.H. Lam, H. Zheng, W. Qiu, K.K. Shung, Prog. Mater. Sci. 66, 87–111 (2014)

    CAS  Google Scholar 

  3. Q. Lin, C. He, X. Long, J. Electroceram. 36, 8–15 (2016)

    CAS  Google Scholar 

  4. I. Payo, J.M. Hale, Sens. Actuators A-Phys. 168, 77–89 (2011)

    CAS  Google Scholar 

  5. K. Tiwari, S.C. Sharma, N. Hozhabri, J. Appl. Phys. 118, 093105 (2015)

    Google Scholar 

  6. T. Phatungthane, G. Rujijanagul, K. Pengpat, S. Eitssayeam, T. Tunkasiri, L.F. Cotica, R. Guo, A.S. Bhalla, Curr. Appl. Phys. 14, 1819–1824 (2014)

    Google Scholar 

  7. Z. Li, H. Fan, S. Jia, L. Song, J. Wang, Solid State Ionics 269, 14–18 (2015)

    CAS  Google Scholar 

  8. B.N. Parida, P.R. Das, R. Padhee, D. Suara, A. Mishra, J. Rout, R.N.P. Choudhary, Mater. Res. Bull. 61, 544–550 (2015)

    CAS  Google Scholar 

  9. S. Mahajan, D. Haridas, S.T. Ali, N.R. Munirathnam, K. Sreenivas, O.P. Thakur, C. Prakash, Physica B 451, 114–119 (2014)

    CAS  Google Scholar 

  10. R.E. Cohen, Nature 358, 136–138 (1992)

    CAS  Google Scholar 

  11. S.-W. Cheong, M. Mostovoy, Nat. Mater. 6, 13–20 (2007)

    CAS  Google Scholar 

  12. A. Singh, R. Chatterjee, Appl. Phys. Lett. 93, 182908–182911 (2008)

    Google Scholar 

  13. L.H. Omari, S. Sayouri, Opt. Mater. 36, 118–122 (2014)

    Google Scholar 

  14. L.H. Omari, S. Sayouri, T. Lamcharfi, L. Hajji, J. Electroceram. 34, 28–37 (2015)

    CAS  Google Scholar 

  15. L.H. Omari, R. Moubah, M. Haddad, Mater. Chem. Phys. 199, 138–143 (2017)

    CAS  Google Scholar 

  16. C.O.P. de Santos, D. Garcia, Y.P. Mascarenhas, J.A. Eiras, Ceramica (Sao Paulo) 36, 17 (1989)

    Google Scholar 

  17. C.K. Suman, K. Prasad, R.N.P. Choudhary, Adv. Appl. Ceram. 104, 294–299 (2005)

    CAS  Google Scholar 

  18. S. Kallel, A. Nasri, N. Kallel, H. Rahmouni, O. Pena, K. Khirouni, M. Oumezzine, Physica B 406, 2172–2176 (2011)

    CAS  Google Scholar 

  19. S. Hcini, E. Oumezzine, M. Baazaoui, H. Rahmouni, K. Khirouni, E.K. Hlil, M. Oumezzine, Appl. Phys. A Mater. Sci. Process. 120, 1453–1459 (2015)

    CAS  Google Scholar 

  20. A. Lasia, B.E. Conway, J.O.M. Bockris, R.E. White, in Modern Aspects of Electrochemistry. Electrochemical impedance spectroscopy and it’s applications (Academic/Plenum Publishers, New York, 1999)

    Google Scholar 

  21. L. Essaleh, G. Marín, S.M. Wasim, S. Lahlali, H. Chehouani, J. Alloys Compd. 688, 210–215 (2016)

    CAS  Google Scholar 

  22. D.K. Mahato, T.P. Sinha, J., Alloys Compd. 634, 246–252 (2015)

    CAS  Google Scholar 

  23. K.C. Verma, M. Ram, J. Sing, R.K. Kotnala, J. Alloys Compd. 509, 4967–4971 (2011)

    CAS  Google Scholar 

  24. A. Shukla, R.N.P. Choudhary, Curr. Appl. Phys. 11, 414–422 (2011)

    Google Scholar 

  25. B. Deka, S. Ravi, J. Alloys Compd. 720, 589–598 (2017)

    CAS  Google Scholar 

  26. S. Sharma et al., Mater. Sci. Semicond. Process. 31, 720–727 (2015)

    CAS  Google Scholar 

  27. A.K. Roy et al., Process. Appl. Ceram. 7, 81–91 (2013)

    CAS  Google Scholar 

  28. E. Oumezzine et al., J. Alloys Compd. 726, 187–194 (2017)

    CAS  Google Scholar 

  29. A.J. Millis, Nature 392, 147–150 (1998)

    CAS  Google Scholar 

  30. A.K. Jonscher, Nature 267, 673–679 (1977)

    CAS  Google Scholar 

  31. R. Kumari, N. Ahlawat, A. Agarwal, S. Sanghi, M. Sindhu, J. Alloys Compd. 676, 452–460 (2016)

    CAS  Google Scholar 

  32. M. Sindhu, N. Ahlawat, S. Sanghi, R. Kumari, A. Agarwal, J. Alloys Compd. 575, 109–114 (2013)

    CAS  Google Scholar 

  33. K. Funke, Prog. Solid State Chem. 33, 111 (1993)

    Google Scholar 

  34. A.K. Behera, N.K. Mohanty, S.K. Satpathy, B. Behera, P. Nayak, Acta Metall. Sin. (Engl. Lett.) 28, 847–857 (2015)

    CAS  Google Scholar 

  35. N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Phys. Rev. B 77, 014111–014111(10) (2008)

    Google Scholar 

  36. S. Sharma, K. Shamim, A. Ranjan, R. Rai, P. Kumari, S. Sinha, Ceram. Int. 41, 7713–7722 (2015)

    CAS  Google Scholar 

  37. A. Hussain, C.W. Ahn, H.J. Lee, I.W. Kim, J.S. Lee, S.J. Jeong, S.K. Rout, Curr. Appl. Phys. 10, 305–310 (2010)

    Google Scholar 

  38. F.N.A. Freire, M.R.P. Santos, F.M.M. Pereira, R.S.T.M. Sohn, J.S. Almeida, A.M.L. Medeiros, E.O. Sancho, M.M. Costa, A.S.B. Sombra, J. Mater. Sci. Mater. Electron. 20, 149–156 (2009)

    CAS  Google Scholar 

  39. H. Mahamoud, B. Louati, F. Hlel, K. Guidara, Bull. Mater. Sci. 34, 1069–1075 (2011)

    CAS  Google Scholar 

  40. A. Shukla, R.N.P. Choudhary, Physica B 406, 2492–2500 (2011)

    CAS  Google Scholar 

  41. D.A. Vinnik, D.A. Zherebtsov, S.A. Gudkova, R. Niewa, N.S. Zabeivorota, F.V. Podgornov, Ceram. Int. 42, 10,787–10,792 (2016)

    CAS  Google Scholar 

  42. V. Thakur, A. Singh, R. Punia, S. Dahiya, L. Singh, J. Alloys Compd. 696, 529–537 (2017)

    CAS  Google Scholar 

  43. R. Jemai, R. M’nassri, A. Selmi, H. Rahmouni, K. Khirouni, N. Chniba Boudjada, A. Cheikhrouhou, J. Alloys Compd. 693, 631–641 (2017)

    CAS  Google Scholar 

  44. R.N. Bhowmik, Ceram. Int. 38, 5069–5080 (2012)

    CAS  Google Scholar 

  45. P.S. Das, P.K. Chakraborty, B. Behera, R.N.P. Choudhary, Physica B 395, 98–103 (2007)

    CAS  Google Scholar 

  46. R. Martinez, A. Kumar, R. Palai, J.F. Scott, R.S. Katiyar, J. Phys. D. Appl. Phys. 44(105), 302 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Moubah.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omari, L.H., Moubah, R., Boutahar, A. et al. Analysis of electrical properties using complex impedance spectroscopy in solid solutions (PbTiO3)0.97-(LaFeO3)0.03 prepared by sol-gel technique. J Electroceram 44, 23–31 (2020). https://doi.org/10.1007/s10832-020-00199-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-020-00199-3

Keywords

Navigation