Skip to main content
Log in

Hydrothermal synthesis of ZnO nanostructures for environmental applications: the role of different supporting ligands

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, an effective approach was presented to design ZnO powders that can be used in environmental applications, especially in the degradation of water pollutants. As far as we know, in addition to hexamethylenetetramine frequently used in the hydrothermal synthesis of ZnO powders, hexylamine, hexamethylenediamine, and monoethanolamine supporting ligands were used for the first time in the literature. Supporting ligands having chains at different ends and lengths allowed the production of ZnO powders with different surface morphologies containing microstructures and nanosheet formations. The monoethanolamine ligand resulted in the improvement of structural properties and the progression of crystallization. Hexylamine ligand played a triggering role in increasing the degradation rate and shortening the degradation time of the methylene blue dye. As a result, the supporting ligands used in the synthesis of ZnO powders have a strong effect on the surface morphology, structural, optical, and photocatalytic properties. Especially, ZnO–hexamethylenetetramine–hexylamine is a suitable candidate for environmental applications. We believe that our synthesis way can compete with the approaches of doping different elements to ZnO powders or forming heterostructures frequently applied in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

Data and materials were provided transparently.

Code availability

There is no software application and no special code.

References

  1. M.T. Noman, N. Amor, M. Petru, A. Mahmood, P. Kejzlar, Photocatalytic behaviour of zinc oxide nanostructures on surface activation of polymeric fibres. Polymers 13, 1227 (2021). https://doi.org/10.3390/polym13081227

    Article  Google Scholar 

  2. S. Khanchandani, S. Kundu, A. Patra, A.K. Ganguli, Shell thickness dependent photocatalytic properties of ZnO/CdS core−shell nanorods. J. Phys. Chem. C 116, 23653–23662 (2012). https://doi.org/10.1021/jp3083419

    Article  Google Scholar 

  3. K. Qi, B. Cheng, J. Yu, W. Ho, Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J. Alloys Compd. 727, 792–820 (2017). https://doi.org/10.1016/j.jallcom.2017.08.142

    Article  Google Scholar 

  4. A. Mclaren, T. Valdes-Solis, G. Li, S.C. Tsang, Shape and size effects of ZnO nanocrystals on photocatalytic activity. J. Am. Chem. Soc. 131(35), 12540–12541 (2009). https://doi.org/10.1021/ja9052703

    Article  Google Scholar 

  5. P.F. Zhu, Y.J. Chen, M. Duan, M. Liu, P. Zou, M. Zhou, Enhanced visible photocatalytic activity of Fe-Cu-ZnO/graphene oxide photocatalysts for the degradation of organic dyes. Can. J. Chem. Eng. 96, 1479–1488 (2018). https://doi.org/10.1002/cjce.23109

    Article  Google Scholar 

  6. R.B. Raj, M. Umadevi, R. Parimaladevi, Enhanced photocatalytic degradation of textile dyeing wastewater under UV and visible light using ZnO/MgO nanocomposites as a novel photocatalyst. Part. Sci. Technol. 38, 812–820 (2020). https://doi.org/10.1080/02726351.2019.1616863

    Article  Google Scholar 

  7. D. Das, P. Nandi, Ternary ZnCdSO composite photocatalyst for efficient dye degradation under visible light retaining Z-scheme of migration pathways for the photogenerated charge carriers. Sol. Energy Mater. Sol. Cells 217, 110674 (2020). https://doi.org/10.1016/j.solmat.2020.110674

    Article  Google Scholar 

  8. M. Sabri, A. Habibi-Yangjeh, S. Ghosh, Novel ZnO/CuBi2O4 heterostructures for persulfate-assisted photocatalytic degradation of dye contaminants under visible light. J. Photochem. Photobiol. A 391(112397), 1–11 (2020). https://doi.org/10.1016/j.jphotochem.2020.112397

    Article  Google Scholar 

  9. S. Vignesh, S. Suganthi, J.K. Sundar, V. Raj, P.R.I. Devi, Highly efficient visible light photocatalytic and antibacterial performance of PVP capped Cd:Ag: ZnO photocatalyst nanocomposites. Appl. Surf. Sci. 479, 914–929 (2019). https://doi.org/10.1016/j.apsusc.2019.02.064

    Article  ADS  Google Scholar 

  10. J.Q. Chang, Y. Zhong, C.H. Hu, J.L. Luo, P.-G. Wang, Study on highly efficient BiOCl/ZnO pn heterojunction: Synthesis, characterization and visible-light-excited photocatalytic activity. J. Mol. Struct. 1183, 209–216 (2019). https://doi.org/10.1016/j.molstruc.2019.01.095

    Article  ADS  Google Scholar 

  11. P. Camarda, L. Vaccaro, A. Sciortino, F. Messina, G. Buscarino, S. Agnello, F.M. Gelardi, Synthesis of multi-color luminescent ZnO nanostructures by ultrashort pulsed laser ablation. Appl. Surf. Sci. 506, 144954 (2020). https://doi.org/10.1016/j.apsusc.2019.144954

    Article  Google Scholar 

  12. C. Zhang, T. Han, W. Wang, J. Zhang, Dried plum-like ZnO assemblies consisted of ZnO nanostructures synthesized by ultrasonic spray pyrolysis. Int. J. Modern Phys. B 34, 2040005 (2020). https://doi.org/10.1142/S0217979220400056

    Article  ADS  Google Scholar 

  13. S. Sharma, S. Chawla, Enhanced UV emission in ZnO/ZnS core shell nanostructures prepared by epitaxial growth in solution. Elect. Mater. Lett. 9, 267–271 (2013). https://doi.org/10.1007/s13391-012-2222-8

    Article  ADS  Google Scholar 

  14. D.T. Nguyen, K.S. Kim, Structural evolution of highly porous/hollow ZnO nanostructures in sonochemical process. Chem. Engg. J. 276, 11–19 (2015). https://doi.org/10.1016/j.cej.2015.04.053

    Article  Google Scholar 

  15. A.D. Folawewo, M.D. Bala, Nanocomposite zinc oxide-based photocatalysts: Recent developments in their use for the treatment of dye-polluted wastewater. Water 14, 3899 (2022). https://doi.org/10.3390/w14233899

    Article  Google Scholar 

  16. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007). https://doi.org/10.1021/cr0500535

    Article  Google Scholar 

  17. M.M. Mahlambi, C.J. Ngila, B.B. Mamba, Recent developments in environmental photocatalytic degradation of organic pollutants: The case of titanium dioxide nanostructures-A review. J. Nanomater. 2015, 790173 (2015). https://doi.org/10.1155/2015/790173

    Article  Google Scholar 

  18. D. Fu, G. Han, C. Meng, Size-controlled synthesis and photocatalytic degradation properties of nano-sized ZnO nanorods. Mater. Lett. 72, 53–56 (2012). https://doi.org/10.1016/j.matlet.2011.12.047

    Article  Google Scholar 

  19. Y.Y. Wang, G.Q. Zhou, L. Zhang, T.Q. Liu, Synthesis and photocatalytic characterization of porous Cu-Doped ZnO nanorods. Acta Phys. Chim. Sin. 32(11), 2785–2793 (2016). https://doi.org/10.3866/PKU.WHXB201608304

    Article  Google Scholar 

  20. X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, R. Liu, Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci. Rep. 4, 4596 (2014). https://doi.org/10.1038/srep04596

    Article  ADS  Google Scholar 

  21. A.B. Lavand, Y.S. Malghe, Synthesis, characterization, and visible light photocatalytic activity of nanosized carbon doped zinc oxide. Int. J. Photochem. 2015, 1–9 (2015). https://doi.org/10.1155/2015/790153

    Article  Google Scholar 

  22. K.K. Haldar, R. Biswas, S. Tanwar, T. Sen, J. Lahtinen, One-pot synthesis of Au embedded ZnO nanorods composite heterostructures with excellent photocatalytic properties. Chem. Select 3, 7882–7890 (2018). https://doi.org/10.1002/slct.201801234

    Article  Google Scholar 

  23. M.A. Bhatti, A.A. Shah, K.F. Almani, A. Tahira, S.E. Chalangar, A.D. Chandio, O. Nur, M. Willander, Z.H. Ibupoto, Efficient photo catalysts based on silver doped ZnO nanorods for the photo degradation of methyl orange. Ceram. Int. 45(17), 23289–23297 (2019). https://doi.org/10.1016/j.ceramint.2019.08.027

    Article  Google Scholar 

  24. P.V. Pimpliskar, S.C. Motekar, G.G. Umarji, W. Lee, S.S. Arbuj, Synthesis of silver-loaded ZnO nanorods and their enhanced photocatalytic activity and photoconductivity study. Photochem. Photobiol. Sci. 18, 1503–1511 (2019). https://doi.org/10.1039/c9pp00099brsc.li/pps

    Article  Google Scholar 

  25. M. Ikram, S. Aslam, A. Haider, S. Naz, A. Ul‑Hamid, A. Shahzadi, M. Ikram, J. Haider, S.O.A. Ahmad, A. R. Butt, Doping of Mg on ZnO Nanorods Demonstrated Improved Photocatalytic Degradation and Antimicrobial Potential with Molecular Docking Analysis, Nanoscale Res Lett 1Al6 (2021) 78, https://doi.org/10.1186/s11671-021-03537-8.

  26. F.H. Alkallas, A.B.G. Trabelsi, R. Nasser, S. Fernandez, Promising Cr-doped ZnO nanorods for photocatalytic degradation facing pollution. Appl. Sci. 12, 34 (2022). https://doi.org/10.3390/app12010034

    Article  Google Scholar 

  27. M. Tosun, S.D. Senol, L. Arda, Effect of Mn/Cu co-doping on the structural, optical and photocatalytic properties of ZnO nanorods. J. Mol. Struct. 1212, 128071 (2020). https://doi.org/10.1016/j.molstruc.2020.128071

    Article  Google Scholar 

  28. F. Yu, Y. Li, Z. Liu, D. Nan, B. Wang, L. He, J. Zhang, X. Tang, Y. Liu, Preparation and photocatalytic properties of ZnO nanorods/g-C3N4 composite. Appl. Phys. A 127, 818 (2021). https://doi.org/10.1007/s00339-021-04964-1

    Article  ADS  Google Scholar 

  29. N.T. Nguyen, V.A. Nguyen, Synthesis, characterization, and photocatalytic activity of ZnO nanomaterials prepared by a green, nonchemical route. J. Nanomater. 2020, 1–8 (2020). https://doi.org/10.1155/2020/1768371

    Article  Google Scholar 

  30. A. Balcha, O.P. Yadav, T. Dey, Photocatalytic degradation of methylene blue dye by zinc oxide nanostructures obtained from precipitation and sol-gel methods. Environ. Sci. Pollut. Res. 23(24), 25485–25493 (2016). https://doi.org/10.1007/s11356-016-7750-6

    Article  Google Scholar 

  31. C. Yang, Q. Li, L. Tang, A. Bai, H. Song, Y. Yu, Monodispersed colloidal zinc oxide nanospheres with various size scales: synthesis, formation mechanism and enhanced photocatalytic activity. J. Mater. Sci. 51(11), 5445–5459 (2016). https://doi.org/10.1007/s10853-016-9848-0

    Article  ADS  Google Scholar 

  32. Z.A. Ujjan, M.A. Bhatti, A.A. Shah, A. Tahira, N.M. Shaikh, S. Kumar, A.Q. Mugheri, S.S. Medany, A. Nafady, F. Alnjiman, M. Emo, B. Vigolo, Z.H. Ibupoto, Simultaneous doping of sulfur and chloride ions into ZnO nanorods for improved photocatalytic properties towards degradation of methylene blue. Ceram. Int. 48, 5535–5545 (2022). https://doi.org/10.1016/j.ceramint.2021.11.098

    Article  Google Scholar 

  33. F. Atay, O. Gultepe, The effect of spinning cycle on structural, optical, surface and photocatalytic properties of sol–gel derived ZnO films. J. Sol-Gel Sci. Technol. 100, 299–309 (2021). https://doi.org/10.1007/s10971-021-05661-4

    Article  Google Scholar 

  34. O. Gultepe, F. Atay, The effect of Al element on structural, optical, electrical, surface and photocatalytic properties of Sol-gel derived ZnO films. Appl. Phys. A 128, 25 (2022). https://doi.org/10.1007/s00339-021-05173-6

    Article  ADS  Google Scholar 

  35. F. Atay, O. Gultepe, Structural, optical and surface properties of sol–gel-derived boron-doped ZnO films for photocatalytic applications. Appl. Phys. A 128, 99 (2022). https://doi.org/10.1007/s00339-022-05261-1

    Article  ADS  Google Scholar 

  36. F. Bensouici, T. Souier, A. Iratni, A. Dakhel, R. Tala-Ighil, M. Bououdina, Effect of acid nature in the starting solution on surface and photocatalytic properties of TiO2 thin films. Surf. Coat. Technol. 251, 170–176 (2014). https://doi.org/10.1016/j.surfcoat.2014.04.021

    Article  Google Scholar 

  37. M. Söyleyici Cergel, E. Demir, F. Atay, The effect of the structural, optical, and surface properties of anatase-TiO2 film on photocatalytic degradation of methylene blue organic contaminant. Ionics 25, 4481–4492 (2019). https://doi.org/10.1007/s11581-019-02986-7

    Article  Google Scholar 

  38. S. Kurtaran, S. Aldag, G. Ofofoglu, I. Akyuz, F. Atay, On the role of Al in ultrasonically sprayed ZnO films. Mater. Chem. Phys. 185(1), 137–142 (2017). https://doi.org/10.1016/j.matchemphys.2016.10.016

    Article  Google Scholar 

  39. I.J. Badovinac, R. Peter, A. Omerzu, K. Salamon, I. Šarić, A. Samaržija, M. Perčić, I.K. Piltaver, G. Ambrožić, M. Petravić, Grain size effect on photocatalytic activity of TiO2 thin films grown by atomic layer deposition. Thin Solid Films 709, 138215 (2020). https://doi.org/10.1016/j.tsf.2020.138215

    Article  ADS  Google Scholar 

  40. S.K. Neogi, S. Chattopadhyay, A. Banerjee, S. Bandyopadhyay, A. Sarkar, R. Kumar, Effect of 50 MeV Li3+ irradiation on structural and electrical properties of Mn-doped ZnO. J. Phys. Condens. Matter. 23, 205801 (2011). https://doi.org/10.1088/0953-8984/23/20/205801

    Article  ADS  Google Scholar 

  41. S. Fujihara, C. Sasaki, T. Kimura, Effects of Li and Mg doping on microstructure and properties of sol-gel ZnO thin films. J. Eur. Ceram. Soc. 21, 2109–2112 (2001). https://doi.org/10.1016/S0955-2219(01)00182-0

    Article  Google Scholar 

  42. F. Atay, I. Akyuz, D. Durmaz, S. Kose, Characterization of ZnO-SnO2 oxide systems produced by ultrasonic spray pyrolysis. Sol. Energy. 193, 666–675 (2019). https://doi.org/10.1016/j.solener.2019.10.012

    Article  ADS  Google Scholar 

  43. B.D. Cullity, Elements of X-Ray diffraction, Addison-Wesley Publishing (2nd Ed.) (1978) Massachusetts, USA.

  44. I. Musa, N. Qamhieh, S.T. Mahmoud, Synthesis and length dependent photoluminescence property of zinc oxide nanorods. Results Phys. 7, 3552–3556 (2017). https://doi.org/10.1016/j.rinp.2017.09.035

    Article  ADS  Google Scholar 

  45. D.N. Montenegro, V. Hortelano, O. Martınez, M.C. Martınez-Tomas, V. Sallet, V. Munoz-Sanjose, J. Jimenez, Non-radiative recombination centres in catalyst-free ZnO nanorods grown by atmospheric-metal organic chemical vapour deposition. J. Phys. D: Appl. Phys. 46(235302), 1–4 (2013). https://doi.org/10.1088/0022-3727/46/23/235302

    Article  Google Scholar 

  46. R. Zhang, P.G. Yin, N. Wang, L. Guo, Photoluminescence and Raman scattering of ZnO nanorods. Solid State Sci. 11, 865–869 (2009). https://doi.org/10.1016/j.solidstatesciences.2008.10.016

    Article  ADS  Google Scholar 

  47. M. Silambarasan, S. Saravanan, T. Soga, Raman and photoluminescence studies of Ag and Fe-doped ZnO nanoparticles. Int. J. ChemTech Res. 7(3), 1644–1650 (2014)

    Google Scholar 

  48. D.N. Montenegro, V. Hortelano, O. Martınez, M.C. Martınez-Tomas, V. Sallet, V. Munoz-Sanjose, J. Jimenez, Non-radiative recombination centres in catalyst-free ZnO nanorods grown by atmospheric-metal organic chemical vapour deposition. J. Phys. D: Appl. Phys. 46, 235302 (2013). https://doi.org/10.1088/0022-3727/46/23/235302

    Article  ADS  Google Scholar 

  49. M.A. Urbina-Yarupetan, J.C. Gonzalez, Micro-raman and micro-photoluminescence study of ZnO thin films. Rev. Inv. Fis. 24(1), 1–8 (2021)

    Article  Google Scholar 

  50. M. Jothibas, A. Muthuvel, K. Senthilkannan, V. Mohana, Structural, optical and photocatatic activity of Ag doped ZnO nanoparticles obtained by sol-gel method. AIP Conf. Proc. 2162, 20151 (2023). https://doi.org/10.1063/1.5130361

    Article  Google Scholar 

  51. L. Liao, D.H. Liu, J.C. Li, C. Liu, Q. Fu, M.S. Ye, Synthesis and Raman analysis of 1D-ZnO nanostructure via vapor phase growth. Appl. Surf. Sci. 240, 175–179 (2005). https://doi.org/10.1016/j.apsusc.2004.06.053

    Article  ADS  Google Scholar 

  52. N. Jayarambabu, B.S. Kumari, K.V. Rao, Y.T. Prabhu, Beneficial role of zinc oxide nanoparticles on green crop production. Int. J. Multidiscip. Adv. Res. Trends. 2(1), 273–282 (2015)

    Google Scholar 

  53. M. Önal, B. Altıokka, Effect of stirring on chemically deposited ZnO thin films. Acta Phys. Pol. A. 137, 1209–1213 (2020). https://doi.org/10.12693/APhysPolA.137.1209

    Article  ADS  Google Scholar 

  54. J. Suresh, G. Pradheesh, V. Alexramani, M. Sundrarajan, S.I. Hong, Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities. Adv. Nat. Sci. Nanosci. Nanotechnol. 9, 15008 (2018). https://doi.org/10.1088/2043-6254/aaa6f1

    Article  ADS  Google Scholar 

  55. N.J. Sushma, B. Mahitha, K. Mallikarjuna, B.D.P. Raju, Bio-inspired ZnO nanoparticles from Ocimum tenuiflorum and their in vitro antioxidant activity. Appl. Phys. A. 122, 544 (2016). https://doi.org/10.1007/s00339-016-0069-9

    Article  ADS  Google Scholar 

  56. K.R.S. Murthy, G.K. Raghu, P. Binnal, Zinc oxide nanostructured material for sensor application. J. Biotechnol. Bioeng. 5(1), 25–29 (2021). https://doi.org/10.22259/2637-5362.0501004

    Article  Google Scholar 

  57. N.H. Mia, S.M. Rana, F. Pervez, M.R. Rahman, K. Hossain, A.A. Mortuza, M.K. Basher, M. Hoq, Preparation and spectroscopic analysis of zinc oxide nanorod thin films of different thicknesses. Mater. Sci.-Poland. 35(3), 501–510 (2017). https://doi.org/10.1515/msp-2017-0066

    Article  ADS  Google Scholar 

  58. P. Sadhukhan, M. Kundu, S. Rana, R. Kumar, J. Das, P.C. Sil, Microwave induced synthesis of ZnO nanorods and their efficacy as a drug carrier with profound anticancer and antibacterial properties. Toxicol. Rep. 6, 176–185 (2019). https://doi.org/10.1016/j.toxrep.2019.01.006

    Article  Google Scholar 

  59. A.A. Chaudhari, U.J. Tupe, A.V. Patil, C.G. Dighavkar, Synthesis and characterization of zinc oxide nanoparticles using green synthesis method. Int. J. Create. Res. Thoughts. 10(2), 302–309 (2022)

    Google Scholar 

  60. M. Gupta, R.S. Tomar, S. Kaushik, R.K. Mishra, D. Sharma, Effective antimicrobial activity of green ZnO nano particles of Catharanthus roseus. Front. Microbiol. 9, 2030 (2018). https://doi.org/10.3389/fmicb.2018.02030

    Article  Google Scholar 

  61. W. Muhammad, N. Ullah, M. Haroon, B.H. Abbasi, Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using Papaver somniferum L. RSC Adv. 9, 29541 (2019). https://doi.org/10.1039/c9ra04424h

    Article  ADS  Google Scholar 

  62. S. Harish, G. Murugesan, J. Archana, M. Navaneethan, S. Ponnusamy, C. Muthamizhchelvan, M. Shimomura, Y. Hayakawa, Effect of organic ligand on ZnO nanostructures and to investigate the photocatalytic activity under visible light illumination. Mater. Sci. Semicond. 103, 104608 (2019). https://doi.org/10.1016/j.mssp.2019.104608

    Article  Google Scholar 

  63. J. Kaihua, B. Shuhong, Coordination compounds of hexamethylenetetramine with metal salts: A review. Johnson Matthey Tech. Review. 62(1), 89–106 (2018). https://doi.org/10.1595/205651317X696621

    Article  Google Scholar 

  64. S.M.T.H. Moghaddas, B. Elahi, M. Darroudi, V. Javanbakht, Green synthesis of hexagonal-shaped zinc oxide nanosheets using mucilage from flaxseed for removal of methylene blue from aqueous solution. J Mol Liquids 296, 111834 (2019). https://doi.org/10.1016/j.molliq.2019.111834

    Article  Google Scholar 

  65. S. Leonardi, Two-Dimensional zinc oxide nanostructures for gas sensor applications. Chemosensors 5(2), 17 (2017). https://doi.org/10.3390/chemosensors5020017

    Article  Google Scholar 

  66. A. Umar, Y. Hahn, ZnO nanosheet networks and hexagonal nanodiscs grown on silicon substrate: growth mechanism and structural and optical properties. Nanotechnology 17(9), 2174 (2006). https://doi.org/10.1088/0957-4484/17/9/016

    Article  ADS  Google Scholar 

  67. J.H. Thorat, P.D. Chaudhari, M.S. Tamboli, S.S. Arbuj, D.B. Patil, B.B. Kale, J. Nanoparticle Res. 16, 2450 (2014). https://doi.org/10.1007/s11051-014-2450-y

    Article  ADS  Google Scholar 

  68. J. Yang, Y. Wang, J. Kong, H. Jia, Z. Wang, Synthesis of ZnO nanosheets via electrodeposition method and their optical properties, growth mechanism. Opt. Mater. 46, 179–185 (2015). https://doi.org/10.1016/j.optmat.2015.04.016

    Article  ADS  Google Scholar 

  69. Y. Liu, D. Huang, H. Liu, T. Li, J. Wang, ZnO Tetrakaidecahedrons with Coexposed 001}, {101}, and {100 facets: shape-selective synthesis and enhancing photocatalytic performance. Cryst. Growth Des. 19, 2758–2764 (2019). https://doi.org/10.1021/acs.cgd.8b01886

    Article  Google Scholar 

  70. S.F.C. Orou, K.J. Hang, M.T. Thien, Y.Y. Lee, L.C. Foh, N.D.N. Diem, G.B. Hee, P.S. Yong, P.Y. Fen, Antibacterial activity by ZnO nanorods and ZnO nanodisks : a model used to illustrate “Nanotoxicity Threshold.” J. Ind. Eng. Chem. 62, 333–340 (2018). https://doi.org/10.1016/j.jiec.2018.01.013

    Article  Google Scholar 

  71. F. Wang, J.H. Seo, G. Luo, M.B. Starr, Z. Li, D. Geng, X. Yin, S. Wang, D.G. Fraser, D. Morgan, Z. Ma, X. Wang, Nanometre-thick single-crystalline nanosheets grown at the water–air interface. Nat. Commun. 7, 10444 (2016). https://doi.org/10.1038/ncomms10444

    Article  ADS  Google Scholar 

  72. H. Kamış, N. Duyar Karakuş, B. Haspulat Taymaz, Electrochemical production of ZnO and ZnO@Ag Core-shell nanorods on ITO substrate and their photocatalytic and photoelectrochemical performance. Bilge Int. J. Sci. Technol. Res. 3(2), 161–177 (2019). https://doi.org/10.30516/bilgesci.605492

    Article  Google Scholar 

  73. B. Zhou, T. Hayashi, K. Hachiya, T. Sagawa, Preparation of Sb2S3 nanorod arrays by hydrothermal method as light absorbing layer for Sb2S3-based solar cells. Thin Solid Films 757, 139389 (2022). https://doi.org/10.1016/j.tsf.2022.139389

    Article  ADS  Google Scholar 

  74. A. Jayachandran, T.R. Aswathy, A.S. Nair, Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract. Biochem. Biophys. Rep. 26, 100995 (2021). https://doi.org/10.1016/j.bbrep.2021.100995

    Article  Google Scholar 

  75. N. Aslan, Synthesis and characterization of ZnO@Fe3O4 composite nanostructures by using hydrothermal synthesis method. Tr. J. Nature Sci. 11(1), 95–101 (2022). https://doi.org/10.46810/tdfd.1011220

    Article  MathSciNet  Google Scholar 

  76. H.S. Alanazi, N. Ahmad, F.A. Alharthi, Synthesis of Gd/N co-doped ZnO for enhanced UV-vis and direct solar-light-driven photocatalytic degradation. RSC Adv. 11, 10194 (2021). https://doi.org/10.1039/d0ra10698d

    Article  ADS  Google Scholar 

  77. R.C. Wang, H.Y. Lin, Cu doped ZnO nanoparticle sheets. Mater. Chem. Phys. 125, 263–266 (2011). https://doi.org/10.1016/j.matchemphys.2010.09.021

    Article  Google Scholar 

  78. M. Söyleyici Cergel, F. Atay, The role of the annealing process in different gas environments on the degradation of the methylene blue organic pollutant by brookite-TiO2 photocatalyst. Ionics 25, 3823–3836 (2019). https://doi.org/10.1007/s11581-019-02941-6

    Article  Google Scholar 

  79. N. Benramdane, W.A. Murad, R.H. Misho, M. Ziane, Z. Kebbab, A chemical method for the preparation of thin films of CdO and ZnO. Mater. Chem. Phys. 48, 119–123 (1997)

    Article  Google Scholar 

  80. L.B. Xiong, J.L. Li, B. Yang, Y. Yu, Ti3+ in the surface of titanium dioxide: Generation, properties and photocatalytic application. J. Nanomater. 831524, 13 (2012). https://doi.org/10.1155/2012/831524

    Article  Google Scholar 

  81. X. Chen, L. Jitao, X. Qingshuang, Significantly improved photoluminescence properties of ZnO thin films by lithium doping. Ceram. Int. 46, 2309–2316 (2020). https://doi.org/10.1016/j.ceramint2019.09.220

    Article  Google Scholar 

  82. J.T. Li, D.Y. Yang, X.H. Zhu, Effects of aging time and annealing temperature on structural and optical properties of solgel ZnO thin films. AIP Adv. 7, 065213 (2017). https://doi.org/10.1063/14985753

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Scientific Research Projects Coordination Unit of Eskisehir Osmangazi University within the scope of the project numbered FHD-2022-2258.

Funding

This study was supported by the Scientific Research Projects Coordination Unit of Eskisehir Osmangazi University within the scope of the project numbered FHD-2022-2258.

Author information

Authors and Affiliations

Authors

Contributions

OG: methodology, conceptualization, formal analysis, investigation, writing—original draft. FA: methodology, formal analysis, supervision, writing—original draft. ZD: methodology, formal analysis, investigation, visualization.

Corresponding author

Correspondence to Ferhunde Atay.

Ethics declarations

Conflict of interest

We declare that we do not have any financial and personal conflict of interest with other persons or organizations that could inappropriately influence (bias) our work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gultepe, O., Atay, F. & Dikmen, Z. Hydrothermal synthesis of ZnO nanostructures for environmental applications: the role of different supporting ligands. Appl. Phys. A 129, 586 (2023). https://doi.org/10.1007/s00339-023-06859-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06859-9

Keywords

Navigation