Skip to main content
Log in

Electrical transport of Mg-doped maghemite (γ-Fe2O3) nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

A Correction to this article was published on 02 November 2022

This article has been updated

Abstract

Maghemite (γ-Fe2O3) and Mg-doped γ-Fe2O3 nanopowders were made using the sol–gel method. The microstructural properties of the generated samples were evaluated using X-ray diffraction (XRD). The indexed reflection peaks were validated to indicate crystallinity of the generated material, which has a cubic structure that matches the reticular planes of γ-Fe2O3 and crystallite sizes ranging from 10 to 16 nm. The electrical investigation was carried out using impedance spectroscopy. Electrical conductivity is a strong supporter of Jonscher's law. As a result, the charge carrier displacement coincides with the pattern of correlated barrier jumps across the dispersive zone generated by interstitial defects and vacancies. The Nyquist graphs show three different models. A sequence of two R-CPE combination circuits is used in the first model for γ-Fe2O3. The second is for γ-Fe2O3-Mg1% and γ-Fe2O3-Mg3% a series of three R-CPE combination circuits. A sequence of two R-CPE combination circuits and one R circuit is the last example for γ-Fe2O3-Mg5%. The polarization effect and a tiny dielectric loss were shown to be connected to dielectric behavior. Furthermore, the occurrence of the space-charge polarization phenomenon, which is ascribed to ion mobility, was used to explain the dielectric constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. M. Benamara, E. Gómez, R. Dhahri, A. Serrà, Enhanced photocatalytic removal of cyanotoxins by Al-doped ZnO nanoparticles with visible-LED irradiation. Toxins 13, 66–82 (2021)

    Article  Google Scholar 

  2. S. Jaballah, M. Benamara, H. Dahman, A. Ly, D. Lahem, M. Debliquy, L. EL Mir, Effect of Mg-doping ZnO nanoparticles on detection of low ethanol concentrations. Mater. Chem. Phys. 255, 123643 (2020)

    Article  Google Scholar 

  3. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, A. Baykal, I. Ercan, Impact of ZnO addition on structural morphological, optical, dielectric and electrical performances of BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. 30(10), 9520–9530 (2019)

    Article  Google Scholar 

  4. E. Hannachi, Y. Slimani, M. Nawaz, R. Sivakumar, Z. Trabelsi, R. Vignesh, G. Yasin, Preparation of cerium and yttrium doped ZnO nanoparticles and tracking their structural, optical, and photocatalytic performances. J. Rare Earths (2022). https://doi.org/10.1016/j.jre.2022.03.020

    Article  Google Scholar 

  5. S. Jaballah, M. Benamara, H. Dahman, D. Lahem, M. Debliquy, L. El Mir, Formaldehyde sensing characteristics of calcium-doped zinc oxide nanoparticles-based gas sensor. J. Mater. Sci. Mater. Electron. 31(11), 8230–8239 (2020)

    Article  Google Scholar 

  6. A. Bembibre, M. Benamara, M. Hjiri, E. Gómez, H.R. Alamri, R. Dhahri, A. Serrà, Visible-light driven sonophotocatalytic removal of tetracycline using Ca-doped ZnO nanoparticles. Chem. Eng. J. 427, 132006 (2021)

    Article  Google Scholar 

  7. H. Dong, H. Zhang, Y. Xu, C. Zhao, Facile synthesis of α-Fe2O3 nanoparticles on porous human hair-derived carbon as improved anode materials for lithium-ion batteries. J. Power Sour. 300, 104–111 (2015)

    Article  ADS  Google Scholar 

  8. S. Saritas, B.C. Sakar, M. Kundakci, M. Yildirim, The effect of Mg dopants on magnetic and structural properties of iron oxide and zinc ferrite thin films. Results Phys. 9, 416–423 (2018)

    Article  ADS  Google Scholar 

  9. A. Mirzaei, B. Hashemi, K. Janghorban, α-Fe2O3 based nanomaterials as gas sensors. J. Mater. Sci. Mater. Electron. 27(4), 3109–3144 (2016)

    Article  Google Scholar 

  10. M. Benamara, J. Massoudi, H. Dahman, E. Dhahri, L. El Mir, A. Ly, D. Lahem, High response to sub-ppm level of NO2 with 50% RH of ZnO sensor obtained by an auto-combustion method. J. Mater. Sci. Mater. Electron. 31(17), 14249–14260 (2020)

    Article  Google Scholar 

  11. M. Benamara, J. Massoudi, H. Dahman, A. Ly, E. Dhahri, M. Debliquy, L. El Mir, D. Lahem, Study of room temperature NO2 sensing performances of ZnO1x (x = 0, 0.05, 0.10). Appl. Phys. A 128(1), 1–18 (2021)

    Google Scholar 

  12. M. Benamara, S.S. Teixeira, M.P.F. Graça, M.A. Valente, S.K. Jakka, H. Dahman, E. Dhahri, M. Debliquy, D. Lahem, Study of ZnO room temperature NO2 sensor under illumination prepared by auto-combustion. Appl. Phys. A 127(9), 1–15 (2021)

    Article  Google Scholar 

  13. A. Manikandan, M. Yogasundari, K. Thanrasu, A. Dinesh, K.K. Raja, Y. Slimani, A. Baykal, Structural, morphological and optical properties of multifunctional magnetic-luminescent ZnO@ Fe3O4 nanocomposite. Physica E 124, 114291 (2020)

    Article  Google Scholar 

  14. S. Ullah, B.D. Campéon, S. Ibraheem, G. Yasin, R. Pathak, Y. Nishina, Q. Yuan, Enabling the fast lithium storage of large-scalable γ-Fe2O3/Carbon nanoarchitecture anode material with an ultralong cycle life. J. Ind. Eng. Chem. 101, 379–386 (2021)

    Article  Google Scholar 

  15. M. Benamara, N. Zahmouli, S. Soreto Teixeira, M.P.F. Graça, L. El Mir, M.A. Valente, Electrical and magnetic studies of maghemite (γ-Fe2O3) prepared by the sol–gel route. J. Electron. Mater. 51, 2698–2707 (2022)

    Article  ADS  Google Scholar 

  16. S. Lin, D. Lu, Z. Liu, Removal of arsenic contaminants with magnetic γ-Fe2O3 nanoparticles. Chem. Eng. J. 211, 46–52 (2012)

    Article  Google Scholar 

  17. D. Chen, R. Xu, hydrothermal synthesis and characterization of nanocrystalline γ-Fe2O3 particles. J. Solid State Chem. 137, 185–190 (1998)

    Article  ADS  Google Scholar 

  18. R. Ianos, E.-A. Taculescu, C. Pacurariu, D. Niznansky, γ-Fe2O3 nanoparticles prepared by combustion synthesis, followed by chemical oxidation of residual carbon with H2O2. Mater. Chem. Phys. 148, 705–711 (2014)

    Article  Google Scholar 

  19. S. Asuha, Y.M. Zhao, S. Zhao, W. Deligeer, Synthesis of mesoporous maghemite with high surface area and its adsorptive properties. Solid State Sci. 14, 833–839 (2012)

    Article  ADS  Google Scholar 

  20. M.F. Silva, A.A.W. Hechenleitner, D.M.F. de Oliveira, M. Agüeros, R. Peñalva, J.M. Irache, E.A.G. Pineda, Optimization of maghemite-loaded PLGA nanospheres for biomedical applications. Eur. J. Pharm. Sci. 49, 343–351 (2013)

    Article  Google Scholar 

  21. D. Chen, Y. Wang, Impurity doping: a novel strategy for controllable synthesis of functional lanthanide nanomaterials. Nanoscale 5, 4621 (2013)

    Article  ADS  Google Scholar 

  22. C.R. De Silva, S. Smith, I. Shim, J. Pyun, T. Gutu, J. Jiao, Z. Zheng, Lanthanide (III)-doped magnetite nanoparticles. J. Am. Chem. Soc. 131, 6336–6337 (2009)

    Article  Google Scholar 

  23. G. Wang, Q. Peng, Y. Li, Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications. Acc. Chem. Res. 44, 322–332 (2011)

    Article  Google Scholar 

  24. E. Darezereshki, M. Ranjbar, F. Bakhtiari, One-step synthesis of maghemite (γ-Fe2O3) nanoparticles by wet chemical method. J. Alloys Compd. 502, 257–260 (2010)

    Article  Google Scholar 

  25. M.N. Bessadok, W. Ahmed, H. Jeidi, C. Bouzidi, N. Ihzaz, C. Barthou, L. El Mir, Development of red luminescent nanocomposite based on calcium doped α-Zn2SiO4 nanoparticles embedded in silica matrix. Physica B 624, 413441 (2022)

    Article  Google Scholar 

  26. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, M. Mumtaz, A. Baykal, I. Ercan, Study of tungsten oxide effect on the performance of BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. 30(14), 13509–13518 (2019)

    Article  Google Scholar 

  27. B.Z. Tang, Y. Geng, J.W.Y. Lam, B. Li, X. Jing, X. Wang, A.B. Fosong Wang, X.X.Z. Pakhomov, Processible nanostructured materials with electrical conductivity and magnetic susceptibility: preparation and properties of maghemite/polyaniline nanocomposite films. Chem. Mater. 11(6), 1581 (1999)

    Article  Google Scholar 

  28. E. AlArfaj, S. Hcini, A. Mallah, M.H. Dhaou, M.L. Bouazizi, Effects of Co substitution on the microstructural, infrared, and electrical properties of Mg0.6−xCoxZn0.4Fe2O4 ferrites. J. Supercond. Nov. Magn. 13, 4107–4116 (2018)

    Article  Google Scholar 

  29. S. Abdul-Jawad, A. Alnajjar, M.H. Abdallah, AC impedance, permittivity and modulus spectroscopy of lead chloride single crystal. Appl. Phys. A 64, 199–201 (1997)

    Article  ADS  Google Scholar 

  30. H. Rahmouni, B. Cherif, K. Khirouni, M. Baazaoui, S. Zemni, Influence of polarization and iron content on the transport properties of praseodymium–barium manganite. J. Phys. Chem. Solids 88, 35–40 (2016)

    Article  ADS  Google Scholar 

  31. R. Thomas, V.K. Varadan, S. Komarneni, D.C. Dube, Diffuse phase transitions, electrical conduction, and low temperature dielectric properties of sol–gel derived ferroelectric barium titanate thin films. J. Appl. Phys. 90, 1480 (2001)

    Article  ADS  Google Scholar 

  32. A.A. Sattar, Temperature dependence of the electrical resistivity and thermoelectric power of rare earth substituted Cu–Cd ferrite. J. Sol. 26(2), 133 (2003)

    Google Scholar 

  33. C.K. Suman, K. Prasad, R.N.P. Choudhary, Complex impedance studies on tungsten-bronze electroceramic: Pb2Bi3LaTi5O18. J. Mater. Sci. 41, 369 (2006)

    Article  ADS  Google Scholar 

  34. S. Hcini, A. Omri, M.L. Bouazizi, A. Dhahri, K. Touileb, Structural, dielectric and electrical properties of sol–gel auto-combustion technic of CuFeCr0.5Ni0.5O4 ferrite. J. Mater. Sci. Mater. Electron. 8674, 16044–16058 (2018)

    Google Scholar 

  35. S. Hcini, A. Selmi, H. Rahmouni, A. Omri, M.L. Bouazizi, Study of conduction mechanism, electrical property, and nonlinear electrical behaviors of Ba0.97Bi0.02Ti0.9Zr0.05Nb0.04O3 perovskite. Ceram. Int. 16, 8 (2016)

    Google Scholar 

  36. R.V. Mangalaraja, S. Ananthakumar, P. Manohar, F.D. Gnanam, Magnetic, electrical and dielectric behaviour of Ni0.8Zn0.2Fe2O4 prepared through flash combustion technique. J. Magn. Magn. Mater. 253, 56 (2002)

    Article  ADS  Google Scholar 

  37. A. Omri, E. Dhahri, B.F.O. Costa, M.A. Valente, Structural, electric and dielectric properties of Ni0.5Zn0.5FeCoO4 ferrite prepared by sol–gel. J. Magn. Magn. Mater. 499, 166243 (2020)

    Article  Google Scholar 

  38. N.F. Mott, E.A. Davis, Electronic Process in Noncrystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  39. B. Chandra Babu, V. Naresh, B. Jayaprakash, S. Buddhudu, Structural, thermal and dielectric properties of lithium zinc silicate ceramic powders by sol–gel method. Ferro Electr. Lett. 38, 124 (2011)

    Google Scholar 

  40. E. Barsoukov, J.R. Macdonald, Impedance spectroscopy: models, data fitting, and analysis. Solid State Ion. 176, 1961–1969 (2005)

    Article  Google Scholar 

  41. R.N.P. Choudhary, B.C. Sutar, R. Das Piyush, Dielectric and impedance spectroscopy of Sr (Bi0.5Nb0.5)O3 ceramics. Ceram. Int. 40, 7791–7798 (2014)

    Article  Google Scholar 

  42. M.M.L. Sonia, S. Anand, V.M. Vinosel, M.A. Janifer, S. Pauline, A. Manikandan, Effect of lattice strain on structure, morphology and magneto-dielectric properties of spinel NiGdxFe2−xO4 ferrite nano-crystallites synthesized by sol–gel route. J. Magn. Magn. Mater. 466, 238–251 (2018)

    Article  ADS  Google Scholar 

  43. P.P. Mohapatra, S. Pattipaka, P. Dobbidi, The effect of Sr substitution on the electrical, dielectric and magnetic behavior of lithium ferrite. Ceram. Int. 45, 25010–25019 (2019)

    Article  Google Scholar 

  44. A. Dutta, T.P. Sinha, Dielectric relaxation in perovskite BaAl1/2Nb1/2O3. J. Phys. Chem. Solids 67, 1484–1491 (2006)

    Article  ADS  Google Scholar 

  45. K. Shahzadi, A.D. Chandio, G. Mustafa, M. Khalid, J.K. Khan, M.S. Akhtar, Z.A. Gilani, H.M. Noorul, H.K. Asgar, Impact of aluminum substitution on the structural and dielectric properties of Ni–Cu spinel ferrite nanoparticles synthesized via sol–gel route. Opt. Quantum Electron. 52, 190 (2020)

    Article  Google Scholar 

  46. S.S. Hossain, K. Praveena, P.K. Roy, Study the magnetic and dielectric properties of Sn substituted nickel–cobalt ferrite synthesized by auto combustion method. J. Mater. Sci. Mater. Electron. 31, 15097–15107 (2020)

    Article  Google Scholar 

  47. I.M. Hodge, M.D. Ingram, A.R. West, Impedance and modulus spectroscopy of polycrystalline solid electrolytes. J. Electroanal. Chem. 74, 125–143 (1976)

    Article  Google Scholar 

  48. T. Badapanda, S. Sarangi, S. Parida, B. Behera, B. Ojha, S. Anwar, Frequency and temperature dependence dielectric study of strontium modified barium zirconium titanate ceramics obtained by mechanochemical synthesis. J. Mater. Sci. Mater. Electron. 26, 3069–3082 (2015)

    Article  Google Scholar 

  49. S.T. Assar, H.F. Abosheiasha, M.K. El Nimr, Study of the dielectric behavior of Co–Ni–Li nanoferrites. J. Magn. Magn. Mater. 350, 12–18 (2014)

    Article  ADS  Google Scholar 

  50. D.K. Rana, S.K. Singh, S.K. Kundu, S. Roy, S. Angappane, S. Basu, Electrical and room temperature multiferroic properties of polyvinylidene fluoride nanocomposites doped with nickel ferrite nanoparticles. New J. Chem. 43, 3128–3138 (2019)

    Article  Google Scholar 

  51. M. Kaiser, Electrical conductivity and complex electric modulus of titanium doped nickel–zinc ferrites. Physica B 407, 606–613 (2012)

    Article  ADS  Google Scholar 

  52. C.B. Mohamed, K. Karoui, S. Saidi, K. Guidara, A.B. Rhaiem, Electrical properties, phase transitions and conduction mechanisms of the [(C2H5)NH3]2CdCl4 compound. Physica B 451, 87 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majdi Benamara.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benamara, M., Bouzidi, S., Zahmouli, N. et al. Electrical transport of Mg-doped maghemite (γ-Fe2O3) nanoparticles. Appl. Phys. A 128, 624 (2022). https://doi.org/10.1007/s00339-022-05753-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05753-0

Keywords

Navigation