Skip to main content
Log in

Role of Ag Doping on Structural, Electrical, and Dielectric Properties of MgFe2O4 Synthesized via the Sol–Gel Route

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Here, we studied the impact of silver doping in the physical properties of magnesium-ferrite (MgFe2O4) synthesized via the sol–gel (Pechini) route. XRD refinement indicates that the undoped sample crystallizes in a cubic structure with space group F d-3 m. However, the doped samples possess metallic silver with the cubic spinel phase. Electrical measurements were carried out by complex impedance spectroscopy at room temperature in the frequency range (100 Hz to 106 Hz). The electrical conductance decreases with increasing of silver content. By fitting the experimental data using Jonscher’s universal power law, it is found that the hopping occurs between neighboring sites. The Nyquist plot shows semicircular arcs, and an equivalent electrical circuit was proposed to explain the impedance results for each sample. The investigation of the normalization curves impedance and electrical modulus normalization curves showed a shift in the two peaks, confirming the presence of short-range charge carrier motion. The dielectric constant and dielectric loss decrease with increasing frequency. This behavior can be explained by a Maxwell–Wagner-type polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Pankhrust, Q.A., Connolly, J., Jones, S.K., Dobson, J.: Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36(13), R167 (2003)

    Article  ADS  Google Scholar 

  2. Sudheesh, V.D., Thomas, N., Roona, N., Baghya, P.K., Sebastian, V.: Synthesis, characterization and influence of fuel to oxidizer ratio on the properties of spinel ferrite (MFe2O4, M= Co and Ni) prepared by solution combustion method. Ceram. Int. 43(17), 15002–15009 (2017)

    Article  Google Scholar 

  3. Swatsitang, E., Phokha, S., Hunpratub, S., Usher, B., Bootchanont, A., Maensiri, S., Chindaprasirt, P.: Characterization and magnetic properties of cobalt ferrite nanoparticles. J. Alloy. Compd. 664, 792–797 (2016)

    Article  Google Scholar 

  4. Sivakumar, N., Narayanasamy, A., Greneche, J.M., Murugaraj, R., Lee, Y.S.: Electrical and magnetic behaviour of nanostructured MgFe2O4 spinel ferrite. J. Alloy. Compd. 504(2), 395–402 (2010)

    Article  Google Scholar 

  5. Godlyn Abraham, A., Manikandan, A., Manikandan, E., Vadivel, S., Jaganathan, S.K., Baykal, A., Sri Renganathan, P.: Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co 2+ ions) doped spinel MgFe 2 O 4 ferrite nanocomposites. J. Magn. Magn. Mater. 452, 380–388 (2018)

    Article  ADS  Google Scholar 

  6. Choodamani, C., Nagabhushana, G.P., Ashoka, S., Prasad, B.D., Rudraswamy, B., Chandrappa, G.T., G. T.: Structural and magnetic studies of Mg (1–x) ZnxFe2O4 nanoparticles prepared by a solution combustion method. J. Alloy. Compd. 578, 103–109 (2013)

    Article  Google Scholar 

  7. Khot, V.M., Salunkhe, A.B., Phadatare, M.R., Thorat, N.D., Pawar, S.H.: Low-temperature synthesis of MnxMg1− xFe2O4 (x= 0–1) nanoparticles: cation distribution, structural and magnetic properties. J. Phys. D Appl. Phys. 46(5), 055303 (2012)

    Article  ADS  Google Scholar 

  8. Mohammed, K.A., Al-Rawas, A.D., Gismelseed, A.M., Sellai, A., Widatallah, H.M., Yousif, A., Elzain, M.E., Shongwe, M.: Infrared and structural studies of Mg1–xZnxFe2O4 ferrites. Physica B 407(4), 795–804 (2012)

    Article  ADS  Google Scholar 

  9. Bobade, D.H., Rathod, S.M., Mane, M.L.: Sol–gel auto-combustion synthesis, structural and enhanced magnetic properties of Ni2+ substituted nanocrystalline Mg–Zn spinel ferrite. Physica B 407(18), 3700–3704 (2012)

    Article  ADS  Google Scholar 

  10. Kotnala, R.K., Shah, J., Singh, B., H. kishan, S. Singh, S.K. Dhawan, and A. Sengupta.: Humidity response of Li-substituted magnesium ferrite. Sens. Actuat. B Chem. 129(2), 909–914 (2008)

    Article  Google Scholar 

  11. Okasha, N.: Influence of silver doping on the physical properties of Mg ferrites. J. Mater. Sci. 43(12), 4192–4197 (2008)

    Article  ADS  Google Scholar 

  12. Roisnel, T., Rodriguez-Carvajal, J.: Computer program, FullProf. LLB-LCSIM (2008)

  13. Young, R.A.: The Rietveld method. (1993)

  14. Shannon, R.D.: Acta Crystallogr. A 32, 751 (1976)

    Article  ADS  Google Scholar 

  15. Chihi, I., Baazaoui, M., Mahjoub, S., Cheikhrouhou-Koubaa, W., Oumezzine, M., Farah, K.: Study of the magnetic and magnetocaloric properties of new perovskite-type materials: La 0.6 Ba 0.2 Sr 0.2 Mn 1− x Fe x O 3. Appl. Phys. A 125(9), 627 (2019)

  16. Aslibeiki, B.: Nanostructural, magnetic and electrical properties of Ag doped Mn-ferrite nanoparticles. Curr. Appl. Phys. 14(12), 1659–1664 (2014)

    Article  ADS  Google Scholar 

  17. Singh, N., Agarwal, A., Sanghi, S., Khasa, S.: Dielectric loss, conductivity relaxation process and magnetic properties of Mg substituted Ni–Cu ferrites. J. Magn. Magn. Mater. 324(16), 2506–2511 (2012)

    Article  ADS  Google Scholar 

  18. Pradeep, A., Priyadharsini, P., Chandrasekaran, G.: Sol–gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study. J. Magn. Magn. Mater. 320(21), 2774–2779 (2008)

    Article  ADS  Google Scholar 

  19. Jonscher, A.K.: The ‘universal’dielectric response. Nature 267(5613), 673–679 (1977)

  20. Funke, K.: Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22(2), 111–195 (1993)

    Article  Google Scholar 

  21. Verma, K.C., Ram, M., Singh, J., Kotnala, R.K.: Impedance spectroscopy and dielectric properties of Ce and La substituted Pb0. 7Sr0. 3 (Fe0. 012Ti0. 988) O3 nanoparticles. J. Alloy. Compd. 509(15), 4967–4971 (2011)

  22. Behera, B., Nayak, P., Choudhary, R.N.: Structural and electrical properties of KCa 2 Nb 5 O 15 ceramics. Cent. Eur. J. Phys. 6(2), 289–295 (2008)

    Google Scholar 

  23. Kumar, A., Singh, B.P., Choudhary, R.N.P., Thakur, A.K.: AC Impedance analysis of the effect of dopant concentration on electrical properties of calcium modified BaSnO3. J. Alloy. Compd. 394(1–2), 292–302 (2005)

    Article  Google Scholar 

  24. Kumari, K., Prasad, K., Choudhary, R.N.P.: Impedance spectroscopy of (Na0. 5Bi0. 5)(Zr0. 25Ti0. 75) O3 lead-free ceramic. J. Alloy. Compd. 453(1–2), 325–331 (2008)

  25. Andoulsi-fezei, R., Sdiri, N., Horchani-naifer, K., Férid, M.: Effect of temperature on the electrical properties of lanthanum ferrite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 205, 214–220 (2018)

    Article  ADS  Google Scholar 

  26. Jebli, M., Rayssi, Ch., Hamdaoui, N., Rabaoui, S., Dhahri, J., Ben Henda, M., Shaarany, I.: Effect of Nb-doping on the structural and electrical properties of Ba0. 97La0. 02Ti1-xNb4x/5O3 ceramics at room temperature synthesized by molten-salt method. J. Alloy. Compd. 784, 204–212 (2019)

    Article  Google Scholar 

  27. Mguedla, R., Ben Jazia, A., Saadi, M., Khirouni, K., Chniba-boudjada, N., Boujelben, W.: Structural, electrical, dielectric and optical properties of PrCrO3 ortho-chromite. J. Alloy. Compd. 812, 152130 (2020)

    Article  Google Scholar 

  28. Sekrafi, H.E., Kharrat, A.B.J., Wederni, M.A., Khirouni, K., Boujelben, W.: Structural, electrical, dielectric properties and conduction mechanism of sol-gel prepared Pr0. 75Bi0. 05Sr0. 1Ba0. 1Mn0. 98Ti0. 02O3 compound. Mater. Res. Bull. 111, 329–337 (2019)

    Article  Google Scholar 

  29. Younas, M., Nadeem, M., Atif, M., Grossinger, R.: Metal-semiconductor transition in NiFe2O4 nanoparticles due to reverse cationic distribution by impedance spectroscopy. J. Appl. Phys. 109(9), 093704 (2011)

    Article  ADS  Google Scholar 

  30. Macdonald, J.R., Johnson, W.B.: Impedance spectroscopy: theory, experiment, and applications. History 1(8), 1–13 (2005)

  31. Khelifi, M., R. M’nassri, A. Selmi, H. Rahmouni, K. Khirouni, N. C. Boudjada and A. Cheikhrouhou.: Investigation of magnetic and transport properties of PrCa (MnCo) O prepared by solid state process. J. Magn. Magn. Mater. 423, 20–26 (2017)

    Article  ADS  Google Scholar 

  32. Gangaprasad, K., Rao, T,D., Niranjan, M.K., Asthana, S.: Microstructural studies of AgNbO3 ceramic by using complex impedance spectroscopy. In AIP Conf. Proc. 1665(1), 110038) (2015)

  33. Sivakumar, N., Narayanasamy, A., Greneche, J.M., Murugaraj, R., Lee, YS.: Electrical and magnetic behaviour of nanostructured MgFe2O4 spinel ferrite. J. Alloys Compd. 504(2), 395–402 (2010)

  34. Prasad, K., Lily, K., Kumari, K., Yadav, K.L.: Hopping type of conduction in (Na0. 5Bi0. 5) ZrO3 ceramic. J. Phys. Chem. Solids 68(8), 1508–1514 (2007) 

  35. Davis, E.A., Mott, N.F.: Electronic processes in non-crystalline materials. Clarendon Press, Oxford (1971)

    Google Scholar 

  36. Farid, H.M.T., Ahmad, I., Ali, I., Mahmood, A., Ramay, S.M.: Structural and dielectric properties of copper-based spinel ferrites. European Phys. J. Plus 133(2), 41 (2018)

    Article  ADS  Google Scholar 

  37. Singh, N., Agarwal, A., Sanghi, S.: Dielectric relaxation, conductivity behavior and magnetic properties of Mg substituted Zn–Li ferrites. Curr. Appl. Phys. 11(3), 783–789 (2011)

    Article  ADS  Google Scholar 

  38. Haque, M.M., Huq, M., Hakim, M.A.: Densification, magnetic and dielectric behaviour of Cu-substituted Mg–Zn ferrites. Mater. Chem. Phys. 112(2), 580–586 (2008)

    Article  Google Scholar 

  39. Koops, C.G.: On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83(1), 121–124 (1951)

    Article  ADS  Google Scholar 

  40. Shirsath, S.E., Toksha, B.G., Mane, M.L., Dhage, V.N., Shengule, D.R., Jadhav, K.M.: Frequency, temperature and In3+ dependent electrical conduction in NiFe2O4 powder. Powder Technol. 212(1), 218–223 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Chihi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chihi, I., Baazaoui, M., Hamdaoui, N. et al. Role of Ag Doping on Structural, Electrical, and Dielectric Properties of MgFe2O4 Synthesized via the Sol–Gel Route. J Supercond Nov Magn 36, 759–768 (2023). https://doi.org/10.1007/s10948-023-06516-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-023-06516-5

Keywords

Navigation