Skip to main content
Log in

Size-dependent continuum-based model of a truncated flexoelectric/flexomagnetic functionally graded conical nano/microshells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, in the presence of a magnetic field using a continuous electromechanical model based on the first-order shear deformation shell model and a modified flexoelectric theory, a new formulation is introduced to study the electromechanical behavior of flexoelectric materials. To improve the internal energy function for isotropic materials, the coupling equations governing the functionally graded magneto-electro-elastic (FGMEE) conical nanoshell have been examined. After extracting the governing equations of the flexoelectric functionally graded conical nanoshell, the corresponding boundary conditions of the coupling equations between mechanical and electrical forces are presented. It should be noted that the formulation of the governing coupled equations of the FGMEE conical nanoshell with polarization independent of electrical potential is the underlying innovation of the current study. To demonstrate the capability and uniqueness of the formulation, static analysis and free vibrations of the shell have been investigated in particular states. To assess the extracted equations in this particular case, the shell equations along with the relevant boundary conditions are solved using Galerkin and the numerically developed Kantorovich method. Finally, various effects including the effect of size and geometric dimensions on the vibration frequency and static analysis have been examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. van den Boomgaard, D.R. Terrell, R.A.J. Born, H.F.J.I. Giller, An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci.s 9, 1705–1709 (1974)

    Article  ADS  Google Scholar 

  2. R. Buchanan George, Layered versus multiphase magneto-electro-elastic composites. CompositesPart B 35, 413–420 (2004)

    Article  Google Scholar 

  3. E. Pan, Exact solution for simply supported and multilayered magneto-electro-elastic plates. ASME J. Appl. Mech. 68, 608–618 (2001)

    Article  ADS  MATH  Google Scholar 

  4. P.R. Heyliger, F. Ramirez, E. Pan, Two-dimensional static fields in magnetoelectroelastic laminates. J. Intel. Mater. Syst. Struct. 15(9–10), 689–709 (2004)

    Article  Google Scholar 

  5. J. van Den Boomgaard, A.M.J.G. van Run, J. Van Suchtelen, Magnetoelectricity in piezoelectric–magnetostrictive composites. Ferroelectrics 10, 295 (1976)

    Article  Google Scholar 

  6. A. Milazzo, Large deflection of magneto-electro-elastic laminated plates. Appl. Math. Modell. 38, 1737–1752 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Jiangyi, C. Hualing, P. Ernian, Free vibration of functionally graded, magnetoelectroelastic, and multilayered plates. Acta. Mech. Solida Sin. 19, 160–166 (2006)

    Article  Google Scholar 

  8. A. Kumaravel, N. Ganesan, R. Sethuraman, Buckling and vibration analysis of layered and multiphase magneto-electro-elastic beam under thermal environment. Multidiscip. Model Mater. Struct. 3, 461–476 (2007)

    Article  Google Scholar 

  9. J. van Den Boomgaard, R.A.J. Born, A sintered magnetoelectric composite material BaTiO3–Ni (Co, Mn) Fe3O4. J. Mater. Sci. 13, 1538 (1978)

    Article  ADS  Google Scholar 

  10. M.S. Majdoub, P. Sharma, T. Cagin, Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77, 1–9 (2008)

    Article  Google Scholar 

  11. S. Lopatin, I. Lopatin, I. Lisnevskaya, Magnetoelectric PZT/ferrite composite material. Ferroelectrics 162, 63 (1994)

    Article  Google Scholar 

  12. G. Srinivasan, E.T. Rasmussen, B.J. Levin, R. Hayes, Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides. Phys. Rev. B 65, 134402 (2002)

    Article  ADS  Google Scholar 

  13. S. Alessandroni, U. Andreaus, F. dell’Isola, M. Porfiri, Piezo-electro-mechanical (PEM) Kirchhoff-Love plates. Eur. J. Mech./A Solids 23, 689–702 (2004)

    Article  MATH  Google Scholar 

  14. J.Y. Zhai, N. Cai, Z. Shi, Y.H. Lin, C.W. Nan, Coupled magnetodielectric properties of laminated PbZr0.53Ti0_47O3/NiFe2O4 ceramics. J. Appl. Phys. 95, 5685 (2004)

    Article  ADS  Google Scholar 

  15. C.P. Wu, Y.H. Tsai, Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux. Int. J. Eng. Sci. 45, 744–769 (2007)

    Article  Google Scholar 

  16. D.J. Huang, H.J. Ding, W.Q. Chen, Static analysis of anisotropic functionally graded magnetoelectro-elastic beams subjected to arbitrary loading. Eur. J. Mech. A Solids 29, 356–369 (2010)

    Article  ADS  MATH  Google Scholar 

  17. Y. Wang, R. Xu, H. Ding, Axisymmetric bending of functionally graded circular magnetoelectro-elastic plates. Eur. J. Mech. A Solids 30, 999–1011 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Z. Lang, L. Xuewu, Buckling and vibration analysis of functionally graded magneto-electrothermo-elastic circular cylindrical shells. Appl. Math. Modell. 37, 2279–2292 (2013)

    Article  MATH  Google Scholar 

  19. C.S. Lao, Q. Kuang, Z.L. Wang, M.C. Park, Y. Deng, Polymer functionalized piezoelectric-FET as humidity/chemical nano-sensors. Appl. Phys. Lett. 90(26), 1–3 (2007)

    Article  Google Scholar 

  20. S.M. Tanner, J.M. Gray, C.T. Rogers, K.A. Bertness, N.A. Sanford, High-Q GaN nanowire resonators and oscillators. Appl. Phys. Lett. 91, 1–3 (2007)

    Article  Google Scholar 

  21. A. Farajpour, M. Mohammadi, A.R. Shahidi, M. Mahzoon, Axisymmetric buckling of the circular graphene plates with the nonlocal continuum plate model. Physica E 43, 1820–1825 (2011)

    Article  ADS  Google Scholar 

  22. A. Shah-Mohammadi-Azar, A. Khanchehgardan, G. Rezazadeh, R. Shabani, Mechanical response of a piezoelectrically sandwiched nano-beam based on the nonlocal theory. Int. J. Eng.-Trans. C Aspects 26(12), 1515–1524 (2013)

    Google Scholar 

  23. R. Shabani, N. Sharafkhani, V.M. Gharebagh, Static and dynamic response of carbon nanotube-based nano-tweezers. Int. J. Eng.-Trans. A Basics 24(4), 377–385 (2011)

    Google Scholar 

  24. P. Malekzadeh, M. Shojaee, Free vibration of nano-plates based on a nonlocal two-variable refined plate theory. Compos. Struct. 95, 443–453 (2013)

    Article  Google Scholar 

  25. A. Khanchehgardan, A. Shah-MohammadiAzar, G. Rezazadeh, R. Shabani, Thermo-elastic damping in nano-beam resonators based on nonlocal theory. Int. J. Eng.-Trans. C Aspects 26(12), 1505–1514 (2013)

    Google Scholar 

  26. S.M. Kogan, Piezoelectric effect under an inhomogeneous strain and acoustic scattering of carriers in crystals. Fiz. TverdTe 5, 2829–2831 (1963)

    Google Scholar 

  27. A.K. Tagantsev, Theory of flexoelectric effect in crystals. Zh. Eksp. Teor. Fiz. 88, 2108–2122 (1985)

    ADS  Google Scholar 

  28. A.K. Tagantsev, Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys. Rev. B 34, 5883 (1986)

    Article  ADS  Google Scholar 

  29. S.P. Shen, S.L. Hu, A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58(5), 665–677 (2010). https://doi.org/10.1016/j.jmps.2010.03.001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. S. Hu, S. Shen, Variational principles and governing equations in nano-dielectrics with the flexoelectric effect. Sci. China Phys. Mech. Astron. 53, 1497–1504 (2010)

    Article  ADS  Google Scholar 

  31. A. Li, S. Zhou, L. Qi, X. Chen, A reformulated flexoelectric theory for isotropic dielectrics. J. Phys. D Appl. Phys. 48, 465502 (2015)

    Article  ADS  Google Scholar 

  32. Y.M. Xu, H.S. Shen, C.L. Zhang, Nonlocal plate model for nonlinear bending of bilayer graphene plates subjected to transverse loads in thermal environments. Compos. Struct. 98, 294–302 (2013). https://doi.org/10.1016/j.compstruct.2012.10.041

    Article  Google Scholar 

  33. Y. Chen, J.D. Lee, A. Eskandarian, Atomistic viewpoint of the applicability of microcontinuum theories. Int. J. Solids Struct. 41(8), 2085–2097 (2004)

    Article  MATH  Google Scholar 

  34. E. Pan, Exact solution for simply supported and multilayered magneto-electro-elastic plates. J. Appl. Mech. 68, 608–618 (2001)

    Article  ADS  MATH  Google Scholar 

  35. E. Pan, F. Han, Exact solution for functionally graded and layered magneto-electro-elastic plates. Int. J. Eng. Sci. 43, 321–339 (2005)

    Article  Google Scholar 

  36. F. Ramirez, P.R. Heyliger, E. Pan, Discrete layer solution to free vibrations of functionally graded magneto-electro-elastic plates. Mech. Adv. Mater. Struct. 13(3), 249–266 (2006)

    Article  Google Scholar 

  37. A.R. Annigeri, N. Ganesan, S. Swarnamani, Free vibration behavior of multiphase and layered magneto-electro-elastic beam. J. Sound Vib. 299, 44–63 (2007)

    Article  ADS  Google Scholar 

  38. C.P. Wu, Y.C. Lu, A modified Pagano method for the 3D dynamic responses of functionally graded magneto-electro-elastic plates. Compos. Struct. 90, 363–372 (2009)

    Article  Google Scholar 

  39. C.P. Wu, Y.H. Tsai, Dynamic responses of functionally graded magneto-electro-elastic shells with open-circuit surface conditions. Int. J. Eng. Sci. 46, 843–857 (2008)

    Article  ADS  MATH  Google Scholar 

  40. A. Shooshtari, S. Razavi, Vibration analysis of a magnetoelectroelastic rectangular plate based on a higher order shear deformation theory. Latin Am. J. Solid Struct. 13, 554–572 (2015). https://doi.org/10.1590/1679-78251831

    Article  Google Scholar 

  41. Y.S. Li, Z.Y. Cai, S.Y. Shi, Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory. Compos. Struct. 111, 522–529 (2014)

    Article  Google Scholar 

  42. M.R. Barati, On non-linear vibrations of flexoelectric nano-beams. Int. J. Eng. Sci. 121, 143–153 (2017)

    Article  Google Scholar 

  43. M.R. Barati, Investigating nonlinear vibration of closed circuit flexoelectric nano-beams with surface effects via Hamiltonian method. Microsyst. Technol. 24(4), 1841–1851 (2017). https://doi.org/10.1007/s00542-017-3549-8

    Article  Google Scholar 

  44. F. Ebrahimi, M.R. Barati, Surface effects on the vibration behavior of flexoelectric nanobeams based on nonlocal elasticity theory. Eur. Phys. J. Plus 132(19), 1–13 (2017). https://doi.org/10.1140/epjp/i2017-11320-5

    Article  Google Scholar 

  45. F. Ebrahimi, M.R. Barati, Nonlocal and surface effects on vibration behavior of axially loaded flexoelectric nano-beams subjected to in-plane magnetic field. Arab. J. Sci. Eng. 43(3), 1423–1433 (2017). https://doi.org/10.1007/s13369-017-2943-y

    Article  Google Scholar 

  46. X. Liang, W. Yang, S. Hu, S. Shen, Buckling and vibration of flexoelectric nanofilms subjected to mechanical loads. J. Phys. D Appl. Phys. 49(11), 115307 (2016). https://doi.org/10.1088/0022-3727/49/11/115307

    Article  ADS  Google Scholar 

  47. C. Zhang, L. Zhang, X. Shen, W. Chen, Enhancing magnetoelectric effect in multiferroic composite bilayers via flexoelectricity. J. Appl. Phys. 119(13), 134102.1-134102.8 (2016). https://doi.org/10.1063/1.4945107

    Article  Google Scholar 

  48. S. Fattahian Dehkordi, Y. Tadi Beni, Electro-mechanical free vibration of single- walled piezoelectric/flexoelectric nano cones using consistent couple stress theory. Int. J. Mech. Sci. 128(129), 125–139 (2017)

    Article  Google Scholar 

  49. A. Ghobadi, B.Y. Tadi, H. Golestanian, Size dependent thermo-electro-mechanical nonlinear bending analysis of flexoelectric nano-plate in the presence of magnetic field. Int. J. Mech. Sci. 152, 118–137 (2019)

    Article  Google Scholar 

  50. A. Ghobadi, H. Golestanian, B.Y. Tadi, ŻK. Kamil, On the size-dependent nonlinear thermo-electro-mechanical free vibration analysis of functionally graded flexoelectric nanoplate. Commun. Nonlinear Sci. Numer. Simul. S1007–5704(20), 30415–30419 (2020). https://doi.org/10.1016/j.cnsns.2020.105585

    Article  MATH  Google Scholar 

  51. A. Ghobadi, H. Golestanian, B.Y. Tadi, Nonlinear thermo-electromechanical vibration analysis of size-dependent functionally graded flexoelectric nano-plate exposed magnetic field. Arch Appl Mech (2020). https://doi.org/10.1007/s00419-020-01708-0

    Article  MATH  Google Scholar 

  52. A. Ghobadi, B.Y. Tadi, ŻK. Kamil, Porosity distribution effect on stress, electric field and nonlinear vibration of functionally graded nanostructures with direct and inverse flexoelectric phenomenon. Compos. Struct. 8223(20), 33146–33149 (2020)

    Google Scholar 

  53. A. Faramarzi Babadi, B.Y. Tadi, Size-dependent continuum-based model of a flexoelectric functionally graded cylindrical nanoshells. Math. Meth. Appl. Sci. (2020). https://doi.org/10.1002/mma.6928

    Article  Google Scholar 

  54. M. Pourabdy, M. Shishehsaz, S. Shahrooi, S. Roknizadeh, Analysis of axisymmetric vibration of functionally-graded circular nano-plate based on the integral form of the strain gradient model. J. Appl. Comput. Mech. 7(4), 2196–2220 (2021). https://doi.org/10.22055/JACM.2021.37461.3021

    Article  Google Scholar 

  55. A. Abouelregal, F.A. Mohammed, M.V. Moustapha, D. Atta, Temperature-dependent physical characteristics and varying heat effects on nonlocal rotating nanobeams due to dynamic load. Facta Universitatis Series Mech. Eng. 19(4), 633–656 (2021)

    Article  Google Scholar 

  56. A.E. Abouelregal, W.W. Mohammed, H.M. Sedighi, Vibration analysis of functionally graded microbeam under initial stress via a generalized thermoelastic model with dual-phase lags. Arch. Appl. Mech. 91, 2127–2142 (2021)

    Article  ADS  Google Scholar 

  57. V.H. Dang, H.M. Sedighi, D.Q. Chan, O. Civalek, A.E. Abouelregal, Nonlinear vibration and stability of FG nanotubes conveying fluid via nonlocal strain gradient theory. Struct. Eng. Mech. 78(1), 103–116 (2021). https://doi.org/10.12989/sem.2021.78.1.103

    Article  Google Scholar 

  58. H.M. Ouakad, A. Valipour, K. Kamil Żur, H.M. Sedighi, J.N. Reddy, On the nonlinear vibration and static deflection problems of actuated hybrid nanotubes based on the stress-driven nonlocal integral elasticity. Mech. Mater. 148, 103532 (2020)

    Article  Google Scholar 

  59. S.K. Jena, S. Chakraverty, M. Malikan, H.M. Sedighi, Implementation of Hermite-Ritz method and Navier’s technique for vibration of functionally graded porous nanobeam embedded in Winkler-Pasternak elastic foundation using bi-Helmholtz nonlocal elasticity. J. Mech. Mater. Struct. 15(3), 405–434 (2020)

    Article  MathSciNet  Google Scholar 

  60. B. Akgöz, Ö. Civalek, A new trigonometric beam model for buckling of strain gradient microbeams. Int. J. Mech. Sci. 81, 88–94 (2014)

    Article  Google Scholar 

  61. B. Akgöz, Ö. Civalek, Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta. Mech. 224(9), 2185–2201 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  62. B. Akgöz, Ö. Civalek, Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams. Compos. B Eng. 129, 77–87 (2017)

    Article  Google Scholar 

  63. M. Gürses, B. Akgöz, Ö. Civalek, Mathematical modeling of vibration problem of nano-sized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation. Appl. Math. Comput. 219(6), 3226–3240 (2012)

    MathSciNet  MATH  Google Scholar 

  64. M.H. Jalaei, H.T. Thai, Ó¦ Civalek, On viscoelastic transient response of magnetically imperfect functionally graded nanobeams. Int. J. Eng. Sci. 172, 103629 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  65. N. Ebrahimi, Y. Tadi Beni, Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory. Steel Compos. Struct. 22(6), 1301–1336 (2016)

    Article  Google Scholar 

  66. Y. Tadi Beni, Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams. J. Intel. Mater. Syst. Struct. 27(16), 2199–2215 (2016)

    Article  Google Scholar 

  67. Y. Tadi Beni, Size-dependent analysis of piezoelectric nanobeams including electro-mechanical coupling. Mech. Res. Commun. 75, 67–80 (2016)

    Article  Google Scholar 

  68. M.S. Ebnali Samani, Y. Tadi Beni, Size dependent thermo-mechanical buckling of the flexoelectric nanobeam. Mater. Res. Exp. (2018). https://doi.org/10.1088/2053-1591/aad2ca

    Article  Google Scholar 

  69. R. Omidian, Y.T. Beni, F. Mehralian, Analysis of size-dependent smart flexoelectric nanobeams. Eur. Phys. J. Plus 132(11), 481 (2017)

    Article  Google Scholar 

  70. R. Bagheri, Y. Tadi Beni, On the size-dependent nonlinear dynamics of viscoelastic/flexoelectric nanobeams. J. Vib. Control (2020). https://doi.org/10.1177/1077546320952225

    Article  Google Scholar 

  71. M. Esmaeili, Y. Tadi Beni, Vibration and buckling analysis of functionally graded flexoelectric smart beam. J. Appl. Comput. Mech. 5(5), 900–917 (2019). https://doi.org/10.22055/JACM.2019.27857.1439

    Article  Google Scholar 

  72. H. Zeighampour, B.Y. Tadi, F. Mehralian, A shear deformable conical shell formulation in the framework of couple stress theory. Acta Mech. (2015). https://doi.org/10.1007/s00707-015-1318-2

    Article  MathSciNet  MATH  Google Scholar 

  73. M. Mohammadimehr, M. Moradi, A. Loghman, Influence of the elastic foundation on the free vibration and buckling of thin-walled piezoelectric-based FGM cylindrical shells under combined loadings. J. Solid Mech. 6(4), 347–365 (2014)

    Google Scholar 

  74. R.A. Toupin, The elastic dielectric. J. Ration. Mech. Anal. 5, 849–915 (1956)

    MathSciNet  MATH  Google Scholar 

  75. J. Sophocles: Electromagnetic waves and antennas, Orfanidis, 1999–2016

  76. Q. Wang, On buckling of column structures with a pair of piezoelectric layers. Eng. Struct. 24, 199–205 (2002)

    Article  Google Scholar 

  77. A.D. Kerr, An extended Kantorovich method for the solution of eigenvalue problems. Int. J. Solids Struct. 5(6), 559–72 (1969)

    Article  MATH  Google Scholar 

  78. R. Ansari, A. Momen, S. Rouhi, S. Ajori, On the vibration of single-walled carbon nanocones: molecular mechanics approach versus molecular dynamics simulations. Shock Vib. 2014, 410783 (2014)

    Google Scholar 

  79. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000)

    Article  ADS  Google Scholar 

  80. C. Ru, Effective bending stiffness of carbon nanotubes. Phys. Rev. B 62(15), 9973 (2000)

    Article  ADS  Google Scholar 

  81. P. Zubko, G.K. Catalan, A. Tagantsev, Flexoelectric effect in solids. Ann. Rev. Mater. Res. 43, 387–421 (2013). https://doi.org/10.1146/annurev-matsci-071312-121634

    Article  ADS  Google Scholar 

  82. L.L. Ke, Y.S. Wang, J.N. Reddy, Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions. Compos. Struct. (2014). https://doi.org/10.1016/j.compstruct.2014.05.048

    Article  Google Scholar 

  83. C.F. Chan Man Fong, D. De Kee, P.N. Kaloni, Advanced Mathematics for Engineering and Science, World Scientific Publishing Co. Pte. Ltd., 5 Toh Tuck Link, Singapore 596224, ISBN: 981–238–292–5 (pbk), 2002

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaghoub Tadi Beni.

Ethics declarations

Conflict of interest

The author declares that there is no any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

According to the definition, the physical components of the strain gradient tensor are as follows:

$$\eta _{{{\text{ijk}}}} = \varepsilon _{{{\text{jk}},i}} = \frac{1}{2}\left( {\left. {u_{j} } \right|_{{{\text{ki}}}} + \left. {u_{k} } \right|_{{{\text{ji}}}} } \right).$$
(69)

In relations pertaining to the orthogonal curvilinear coordinate system, we have [83]:

$$\begin{gathered} {\left. {u_j} \right|_{{\text{ki}}}} = {u_{j,{\text{ki}}}} - {(\Gamma_{j\,\,\,k}^m)_{,i}}{u_m} - \Gamma_{j\,\,\,k}^m{({u_m})_{,i}} - \Gamma_{j\,\,\,i}^s{({u_s})_{,k}} - \Gamma_{k\,\,\,i}^s{({u_j})_{,s}} \hfill \\ + \Gamma_{j\,\,\,i}^s\Gamma_{s\,\,\,k}^m{u_m} + \Gamma_{k\,\,\,i}^s\Gamma_{j\,\,\,s}^m{u_m} \hfill \\ \end{gathered}$$
(70)

where \({\left. {u_j} \right|_{{\text{ki}}}}\) is the second-order deformation gradient tensor, g is the metric (Euclidean) tensor, and \({\Gamma }_{j\;k}^i\) is the Christoffel symbol, and the physical components of this tensor are defined as follows:

$$\begin{gathered} {u_{(j),{\text{ki}}}} = {({u_{(j)}}\sqrt {{g_{{\text{jj}}}}} )_{,{\text{ki}}}} - \Gamma_{j\,\,\,k}^m{({u_{(m)}}\sqrt {{g_{{\text{mm}}}}} )_{,i}} - \Gamma_{j\,\,\,i}^s{({u_{(s)}}\sqrt {{g_{{\text{ss}}}}} )_{,k}} \hfill \\ - \Gamma_{k\,\,\,i}^s{({u_{(j)}}\sqrt {{g_{{\text{jj}}}}} )_{,s}} + [ - {(\Gamma_{j\,\,\,k}^m)_{,i}} + \Gamma_{j\,\,\,i}^s\Gamma_{s\,\,\,k}^m + \Gamma_{k\,\,\,i}^s\Gamma_{j\,\,\,s}^m]({u_{(m)}}\sqrt {{g_{{\text{mm}}}}} ). \hfill \\ \end{gathered}$$
(71)

The definition of the physical components of the strain gradient tensor is as follows:

$${\eta_{({\text{ijk}})}} = \sqrt {{g^{{\text{ii}}}}} \sqrt {{g^{{\text{jj}}}}} \sqrt {{g^{{\text{kk}}}}} {\eta_{{\text{ijk}}}} = \frac{1}{{\sqrt {{g_{{\text{ii}}}}} \sqrt {{g_{{\text{jj}}}}} \sqrt {{g_{{\text{kk}}}}} }}{\eta_{{\text{ijk}}}}$$
(72)

In this relation, \(g_{{{\text{ii}}}}\) are components which refer to Einstein’s summation notation and \(g^{{{\text{ii}}}}\) is the conjugate of \(g_{{{\text{ii}}}}\).

$$\begin{aligned} \sqrt {g_{{{\text{ii}}}} } & \sqrt {g_{{{\text{jj}}}} } \sqrt {g_{{{\text{kk}}}} } \eta _{{({\text{ijk}})}} = \frac{1}{2}(u_{{(j),{\text{ki}}}} + u_{{(k),{\text{ji}}}} ) \to \\ & \eta _{{({\text{ijk}})}} = \frac{1}{2}\frac{1}{{\sqrt {g_{{{\text{ii}}}} } \sqrt {g_{{{\text{jj}}}} } \sqrt {g_{{{\text{kk}}}} } }}(u_{{(j),{\text{ki}}}} + u_{{(k),{\text{ji}}}} ). \\ \end{aligned}$$
(73)

In the conical shell coordinate system, the nonzero components of the tensors \({\Gamma }_{k l}^{m}\) and \({g}_{kl}\) are calculated as follows:

$$\begin{gathered} g_{{xx}} = 1,g_{{\theta \theta }} = (x\sin \alpha (1 + z/x\tan \alpha ))^{2} ,g_{{zz}} = 1, \hfill \\ \Gamma _{{\theta x}}^{\theta } = \Gamma _{{x\theta }}^{\theta } = \frac{1}{{x(1 + z/x\tan \alpha )}},\Gamma _{{\theta \theta }}^{x} = - x\sin ^{2} \alpha (1 + z/x\tan \alpha ), \hfill \\ \Gamma _{{\theta \theta }}^{z} = - x\sin \alpha \cos \alpha (1 + z/x\tan \alpha ),\Gamma _{{\theta z}}^{\theta } = \Gamma _{{z\theta }}^{\theta } = \frac{1}{{x\tan \alpha (1 + z/x\tan \alpha )}}. \hfill \\ \end{gathered}$$
(74)

According to the relations (72), (73) and (74), the physical components of the tensor \({\eta_{ijk}}\) are obtained. Based on the definition of components of the symmetric part of the strain gradient tensor and the components of the deviatoric strain gradient tensor, the components of the deviatoric strain gradient tensor are defined as follows:

$$\eta_{{\text{ijk}}}^{(1)} = \frac{1}{3}({\eta_{{\text{ijk}}}} + {\eta_{{\text{jki}}}} + {\eta_{{\text{kij}}}}) - \frac{1}{5}({\delta_{{\text{ij}}}}\eta_{{\text{mmk}}}^s + {\delta_{{\text{jk}}}}\eta_{{\text{mmi}}}^s + {\delta_{{\text{ki}}}}\eta_{{\text{mmj}}}^s),\eta_{{\text{ijk}}}^s = \frac{1}{3}({\eta_{{\text{ijk}}}} + {\eta_{{\text{jki}}}} + {\eta_{{\text{kij}}}}),$$
(75)

Similarly, the definition of the components of deviatoric strain gradient tensor, hydrostatic strain, and strain gradient tensor is as follows:

$$\begin{gathered} {{\chi ^{\prime}}_{{\text{ij}}}} = {e_{{\text{ipq}}}}{{\eta ^{\prime}}_{{\text{pqj}}}}. \hfill \\ {{\eta ^{\prime}}_{{\text{ijk}}}} = {\eta_{{\text{ijk}}}} - \eta_{{\text{ijk}}}^h. \hfill \\ \eta_{{\text{ijk}}}^h = \frac{1}{3}{\delta_{{\text{jk}}}}{\eta_{{\text{inn}}}}. \hfill \\ \end{gathered}$$
(76)

The deviatoric rotation gradient tensor components are obtained. In defining the components of the strain tensor deviatoric part and the components of the strain tensor [72], we have the following:

$$\varepsilon _{{xx}} = \frac{{\partial u}}{{\partial x}},\varepsilon _{{\theta \theta }} = \frac{1}{{x\sin \alpha (1 + z/x\tan \alpha )}}\left[ {\frac{{\partial v}}{{\partial \theta }} + u\sin \alpha + w\cos \alpha } \right],\varepsilon _{{zz}} = \frac{{\partial w}}{{\partial z}},$$
$$\varepsilon _{{x\theta }} = \varepsilon _{{\theta x}} = \frac{1}{{2x\sin \alpha (1 + z/x\tan \alpha )}}\left[ {\frac{{\partial u}}{{\partial \theta }} + x\sin \alpha (1 + z/x\tan \alpha )\frac{{\partial v}}{{\partial x}} - v\sin \alpha } \right],$$
$$\varepsilon _{{z\theta }} = \varepsilon _{{\theta z}} = \frac{1}{{2x\sin \alpha (1 + z/x\tan \alpha )}}\left[ {\frac{{\partial w}}{{\partial \theta }} + x\sin \alpha (1 + z/x\tan \alpha )\frac{{\partial v}}{{\partial z}} - v\cos \alpha } \right],$$
$$\varepsilon _{{xz}} = \varepsilon _{{zx}} = \frac{1}{2}\left[ {\frac{{\partial w}}{{\partial x}} + \frac{{\partial u}}{{\partial z}}} \right].$$
$${\varepsilon ^{\prime}_{{\text{ij}}}} = {\varepsilon_{{\text{ij}}}} - \frac{1}{3}{\delta_{{\text{ij}}}}{\varepsilon_{{\text{nn}}}}$$
(77)

Therefore, the components of the deviatoric part of strain tensor are obtained. The definition of the gradient components of a vector in an orthogonal curvilinear coordinate system is:

$${\left. {u^l} \right|_j} = \frac{{\partial {u^l}}}{{\partial {q^j}}} + \Gamma_{m\,\,\,j}^l{u^m}.$$
(78)

The dilatation gradient vector components are defined as follows:

$${\gamma_i} = {\left. {{\varepsilon_{nn}}} \right|_i} = {\left. {(\underline \nabla .\underline u )} \right|_i}.$$
(79)

Finally, according to the definition of the physical components of this coordinate system, the physical components of the dilatation gradient vector are obtained. Considering the physical components of the vector \(\vec P\) the polarization vector and the vector \(\vec M\) the magnetization vector in general and also according to the definition of the gradient of the vector of the curvilinear coordinate system, we will have:

$$\overrightarrow P = ({P_x}(x,\theta ,z,t),{P_\theta }(x,\theta ,z,t),{P_z}(x,\theta ,z,t)).$$
$${Q_{({\text{ij}})}} = \frac{1}{{\sqrt {{g_{{\text{ii}}}}} \sqrt {{g_{{\text{jj}}}}} }}\left[ {{{({P_{(i)}}\sqrt {{g_{{\text{ii}}}}} )}_{,j}} - \Gamma_{i\,j}^m{P_{(m)}}\sqrt {{g_{{\text{mm}}}}} } \right],$$
(80)

similarly:

$$\overrightarrow M = ({M_x}(x,\theta ,z,t),{M_\theta }(x,\theta ,z,t),{M_z}(x,\theta ,z,t)).$$
$${S_{({\text{ij}})}} = \frac{1}{{\sqrt {{g_{{\text{ii}}}}} \sqrt {{g_{{\text{jj}}}}} }}\left[ {{{({M_{(i)}}\sqrt {{g_{{\text{ii}}}}} )}_{,j}} - \Gamma_{i\,j}^m{M_{(m)}}\sqrt {{g_{{\text{mm}}}}} } \right],$$
(81)

Based on the Maxwell electric field definition (14) and the gradient definition of a vector in the orthogonal curvilinear coordinate system, we will have:

$$\begin{gathered} E_i^{{\text{MS}}} = - {\left. \varphi \right|_i},E_{(i)}^{{\text{MS}}} = \frac{ - 1}{{\sqrt {{g_{{\text{ii}}}}} }}\frac{\partial \varphi (x,\theta ,z,t)}{{\partial {q^i}}} \hfill \\ E_{(x)}^{{\text{MS}}} = - \frac{\partial \varphi (x,\theta ,z,t)}{{\partial x}},E_{(\theta )}^{{\text{MS}}} = \frac{ - 1}{{x\sin \alpha (1 + z/x\tan \alpha )}}\frac{\partial \varphi (x,\theta ,z,t)}{{\partial \theta }},E_{(z)}^{{\text{MS}}} = - \frac{\partial \varphi (x,\theta ,z,t)}{{\partial z}}. \hfill \\ \end{gathered}$$
(82)

In the same way, for the components of Maxwell magnetic flux field we will have:

$$\begin{gathered} H_{(i)}^{{\text{MS}}} = \frac{ - 1}{{\sqrt {{g_{{\text{ii}}}}} }}\frac{\partial \psi (x,\theta ,z,t)}{{\partial {q^i}}} \hfill \\ H_{(x)}^{{\text{MS}}} = - \frac{\partial \psi (x,\theta ,z,t)}{{\partial x}},H_{(\theta )}^{{\text{MS}}} = \frac{ - 1}{{x\sin \alpha (1 + z/x\tan \alpha )}}\frac{\partial \psi (x,\theta ,z,t)}{{\partial \theta }},H_{(z)}^{{\text{MS}}} = - \frac{\partial \psi (x,\theta ,z,t)}{{\partial z}}. \hfill \\ \end{gathered}$$
(83)

Appendix 2

The resultants of force and moments are defined as follows:

$$N_{f} = \int\limits_{{ - \frac{h}{2}}}^{{\frac{h}{2}}} f {\text{d}}z,M_{f} = \int\limits_{{ - \frac{h}{2}}}^{{\frac{h}{2}}} f \,z\,{\text{d}}z.$$
(84)

Also, consider the relation pertaining to the functionally graded behavior of the conical nanoshell as follows:

$$M(z) = M_{1} + (M_{2} - M_{1} )\left( {\frac{1}{2} + \frac{z}{h}} \right)^{N}$$
(85)

Therefore, each of the resultants is obtained.

Appendix 3

$$\begin{aligned} A_{1} = & \frac{{ - 12l_{1} ^{2} M2}}{{5x^{4} }} - \frac{{54{\kern 1pt} l_{0} ^{2} M2}}{{5{\kern 1pt} x^{4} }} + \frac{{ - 12{\kern 1pt} l_{0} ^{2} - 16{\kern 1pt} l_{1} ^{2} }}{{5x^{3} \tan \left( \alpha \right)}}M0 + {\kern 1pt} \frac{{4M2}}{{3x^{2} }} + \frac{{M3}}{{x^{2} }},A_{2} = \frac{{ - K0}}{x} + {\kern 1pt} \frac{{ - 4M0}}{{3x}} + \frac{{\left( {54{\kern 1pt} l_{0} ^{2} + 12{\kern 1pt} l_{1} ^{2} } \right)M0}}{{5x^{3} }}, \\ A_{3} = & {\kern 1pt} \frac{{\left( { - 54{\kern 1pt} l_{0} ^{2} - 12{\kern 1pt} l_{1} ^{2} } \right)M0}}{{5x^{4} \tan \left( \alpha \right)}} + \frac{{\left( {18{\kern 1pt} l_{0} ^{2} + 24{\kern 1pt} l_{1} ^{2} } \right)M0}}{{5x^{4} \left( {\tan \left( \alpha \right)} \right)^{3} }} + \frac{{4M0}}{{3x^{2} \tan \left( \alpha \right)}} + \frac{{K0}}{{x^{2} \tan \left( \alpha \right)}}, \\ A_{4} = & {\kern 1pt} \frac{{ - 7h}}{{3\left( {N + 1} \right)x^{4} \left( {\sin \left( \alpha \right)} \right)^{3} }}\left\{ {\left[ {x^{2} N\left( {\mu _{1} + \frac{{3k_{1} }}{7}} \right) + \frac{{ - 288{\kern 1pt} N\mu _{1} }}{{35}}\left( {l_{0} ^{2} + \frac{{7{\kern 1pt} l_{1} ^{2} }}{9} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{48}}} \right) + x^{2} \left( {\mu _{2} + \frac{{3k_{2} }}{7}} \right)} \right.} \right. \\ & \left. { + \frac{{ - 288{\kern 1pt} \mu _{2} }}{{35}}\left( {l_{0} ^{2} + \frac{{7{\kern 1pt} l_{1} ^{2} }}{9} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{48}}} \right)} \right]\cos ^{2} \left( \alpha \right) + \left( { - \mu _{1} + \frac{{ - 3k_{1} }}{7}} \right)Nx^{2} + \frac{{351{\kern 1pt} N\mu _{1} }}{{70}}\left( {l_{0} ^{2} + \frac{{88{\kern 1pt} l_{1} ^{2} }}{{351}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{117}}} \right) \\ & \left. { + \left( { - \mu _{2} + \frac{{ - 3k_{2} }}{7}{\kern 1pt} } \right)x^{2} + \frac{{351{\kern 1pt} \mu _{2} }}{{70}}\left( {l_{0} ^{2} + \frac{{88{\kern 1pt} l_{1} ^{2} }}{{351}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{117}}} \right)} \right\},A_{5} = \frac{{\left( { - 18{\kern 1pt} l_{0} ^{2} - 4{\kern 1pt} l_{1} ^{2} } \right)M0}}{{5x^{2} \tan \left( \alpha \right)}} \\ & + {\kern 1pt} \frac{{2\left( {27{\kern 1pt} l_{0} ^{2} + 6{\kern 1pt} l_{1} ^{2} } \right)M2}}{{5x^{3} }} + \frac{{ - M3}}{x} + \frac{{ - 4M2}}{{3x}},A_{6} = \frac{{K0}}{{x^{2} }} + {\kern 1pt} \frac{{4M0}}{{3x^{2} }} + \frac{{\left( { - 54{\kern 1pt} l_{0} ^{2} - 12{\kern 1pt} l_{1} ^{2} } \right)M0}}{{5x^{4} }} + \frac{{\left( {18{\kern 1pt} l_{0} ^{2} + 24{\kern 1pt} l_{1} ^{2} } \right)M0}}{{5x^{4} \left( {\tan \left( \alpha \right)} \right)^{2} }}, \\ A_{7} = & \frac{{ - 24{\kern 1pt} h}}{{5{\kern 1pt} x^{4} \left( {\sin \left( \alpha \right)} \right)^{3} \left( {N^{2} + 3{\kern 1pt} N + 2} \right)}}\left\{ {\frac{{ - 35{\kern 1pt} Nh\cos ^{2} \left( \alpha \right)}}{{144}}\left[ {x^{2} \left( {\mu _{1} - \mu _{2} + \frac{{3k_{1} }}{7}{\kern 1pt} + \frac{{{\kern 1pt} - 3k_{2} }}{7}} \right)} \right.} \right. \\ & \left. { - \frac{{351{\kern 1pt} \mu _{1} - 351{\kern 1pt} \mu _{2} }}{{70}}\left( {l_{0} ^{2} + \frac{{112{\kern 1pt} l_{1} ^{2} }}{{351}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{117}}} \right)} \right] + x\sin \left( \alpha \right)\cos \left( \alpha \right)\left( {l_{0} ^{2} + \frac{{29{\kern 1pt} l_{1} ^{2} }}{{18}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{12}}} \right)\left( {N + 2} \right)\left( {N\mu _{1} + \mu _{2} } \right) \\ & \left. { + \frac{{35{\kern 1pt} Nh}}{{144}}\left[ {x^{2} \left( {\mu _{1} - \mu _{2} + \frac{{3k_{1} }}{7} + \frac{{{\kern 1pt} - 3k_{2} }}{7}} \right) - \frac{{351{\kern 1pt} \mu _{1} - 351{\kern 1pt} \mu _{2} }}{{70}}\left( {l_{0} ^{2} + \frac{{88{\kern 1pt} l_{1} ^{2} }}{{351}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{117}}} \right)} \right]} \right\}, \\ A_{8} = & \frac{{h\left( {N\mu _{1} + \mu _{2} } \right)}}{{x^{4} \sin ^{4} \left( \alpha \right)\left( {N + 1} \right)}}\left[ {\left( {x^{2} + \frac{{99{\kern 1pt} l_{0} ^{2} }}{{10}} + \frac{{8{\kern 1pt} l_{1} ^{2} }}{{15}} + \frac{{ - 5l_{2} ^{2} }}{2}} \right)\cos ^{2} \left( \alpha \right) - x^{2} + \frac{{ - 99{\kern 1pt} l_{0} ^{2} }}{{10}} + \frac{{ - 28{\kern 1pt} l_{1} ^{2} }}{{15}} + \frac{{{\kern 1pt} l_{2} ^{2} }}{2}} \right], \\ A_{9} = & {\kern 1pt} \frac{{M2{\kern 1pt} \left( {27{\kern 1pt} l_{0} ^{2} + 16{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)}}{{30x^{4} \sin ^{4} \left( \alpha \right)}},A_{{10}} = \frac{{\left( {18{\kern 1pt} l_{0} ^{2} + 4{\kern 1pt} l_{1} ^{2} } \right)M2}}{5},A_{{11}} = {\kern 1pt} \frac{{M2{\kern 1pt} \left( {27{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} + 3{\kern 1pt} l_{2} ^{2} } \right)}}{{6x^{2} \sin ^{2} \left( \alpha \right)}}, \\ A_{{12}} = & \frac{{2h\left( {N\mu _{1} + \mu _{2} } \right)\left( {9{\kern 1pt} l_{0} ^{2} + 2{\kern 1pt} l_{1} ^{2} } \right)}}{{5{\kern 1pt} N + 5}},A_{{13}} = \frac{{h\left( {N\mu _{1} + \mu _{2} } \right)\left( {27{\kern 1pt} l_{0} ^{2} + 16{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)}}{{30\left( {N + 1} \right)x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} }}, \\ \end{aligned}$$
(86)
$$\begin{aligned} A_{{14}} = & - \frac{h}{{\left( {N + 1} \right)x^{3} \tan \left( \alpha \right)}}\left\{ {\left[ {\left( {k_{1} + \frac{{ - 2\mu _{1} }}{3}{\kern 1pt} } \right)x^{2} - \frac{{\left( {48{\kern 1pt} l_{0} ^{2} + 4{\kern 1pt} l_{1} ^{2} } \right)\mu _{1} }}{5}} \right]N + \left( {\frac{{ - 2\mu _{2} }}{3} + k_{2} } \right)x^{2} - \frac{{\left( {48{\kern 1pt} l_{0} ^{2} + 4{\kern 1pt} l_{1} ^{2} } \right)\mu _{2} }}{5}} \right\}, \\ A_{{15}} = & \frac{{M2{\kern 1pt} \left( {81{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} - 15{\kern 1pt} l_{2} ^{2} } \right)}}{{30x^{3} \left( {\sin \left( \alpha \right)} \right)^{3} }},A_{{16}} = {\kern 1pt} \frac{{M2{\kern 1pt} \left( {81{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} - 15{\kern 1pt} l_{2} ^{2} } \right)}}{{30x\sin \left( \alpha \right)}},A_{{17}} = {\kern 1pt} \frac{{h\left( {N\mu _{1} + \mu _{2} } \right)\left( {9{\kern 1pt} l_{0} ^{2} + 4{\kern 1pt} l_{1} ^{2} - 3{\kern 1pt} l_{2} ^{2} } \right)\cos \left( \alpha \right)}}{{3\sin ^{3} \left( \alpha \right)\left( {N + 1} \right)x^{3} }}, \\ A_{{18}} = & {\kern 1pt} \frac{{ - h\left( {N\mu _{1} + \mu _{2} } \right)\left( {441{\kern 1pt} l_{0} ^{2} + 248{\kern 1pt} l_{1} ^{2} - 15{\kern 1pt} l_{2} ^{2} } \right)\cos \left( \alpha \right)}}{{30\sin ^{3} \left( \alpha \right)\left( {N + 1} \right)x^{4} }},A_{{19}} = \frac{{ - \left( {36{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} } \right)\left( {N\mu _{1} + \mu _{2} } \right)h}}{{\left( {5{\kern 1pt} N + 5} \right)x^{2} \tan \left( \alpha \right)}}, \\ A_{{20}} = & \frac{{\left( {36{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} } \right)\left( {N\mu _{1} + \mu _{2} } \right)h}}{{\left( {5{\kern 1pt} N + 5} \right)x}},A_{{21}} = \frac{{h^{2} N\left( { - \mu _{2} + \mu _{1} } \right)\left( {351{\kern 1pt} l_{0} ^{2} + 88{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)}}{{60{\kern 1pt} x^{4} \left( {\sin \left( \alpha \right)} \right)^{3} \left( {N + 2} \right)\left( {N + 1} \right)}}, \\ A_{{22}} = & {\kern 1pt} \frac{{h^{2} N\left( { - \mu _{2} + \mu _{1} } \right)\left( {27{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} + 3{\kern 1pt} l_{2} ^{2} } \right)}}{{6x^{2} \sin \left( \alpha \right)\left( {N + 2} \right)\left( {N + 1} \right)}},A_{{23}} = \left\{ {\frac{{ - h^{2} N\left( {\cos \left( \alpha \right)} \right)^{2} }}{{6\left( {\sin \left( \alpha \right)} \right)^{3} \left( {N^{2} + 3{\kern 1pt} N + 2} \right)x^{3} }}\left[ {x^{2} \left( { - \mu _{2} + \mu _{1} + 3{\kern 1pt} k_{1} - 3{\kern 1pt} k_{2} } \right)} \right.} \right. \\ & \left. { - \frac{{ - 351{\kern 1pt} \mu _{2} + 351{\kern 1pt} \mu _{1} }}{{10}}\left( {l_{0} ^{2} + \frac{{64{\kern 1pt} l_{1} ^{2} }}{{351}} - \frac{{5{\kern 1pt} l_{2} ^{2} }}{{117}}} \right)} \right] + \frac{1}{2}x\left( {l_{0} ^{2} + \frac{{32{\kern 1pt} l_{1} ^{2} }}{9} - 5/3{\kern 1pt} l_{2} ^{2} } \right)\left( {N + 2} \right)\left( {N\mu _{1} + \mu _{2} } \right)\sin \left( {2{\kern 1pt} \alpha } \right) \\ & \left. { + \frac{5}{9}{\kern 1pt} Nh\left[ {x^{2} ( - \mu _{2} + \mu _{1} + 3{\kern 1pt} k_{1} - 3{\kern 1pt} k_{2} ) - \frac{{ - 351{\kern 1pt} \mu _{2} + 351{\kern 1pt} \mu _{1} }}{{10}}\left( {l_{0} ^{2} + \frac{{88{\kern 1pt} l_{1} ^{2} }}{{351}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{117}}} \right)} \right]} \right\}, \\ A_{{24}} = & \frac{{ - h\left( {N\mu _{1} + \mu _{2} } \right)\left( {27{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} + 3{\kern 1pt} l_{2} ^{2} } \right)}}{{3\left( {N + 1} \right)x^{2} \sin \left( \alpha \right)}},A_{{25}} = \frac{{ - h\left( {N\mu _{1} + \mu _{2} } \right)\left( {351{\kern 1pt} l_{0} ^{2} + 88{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)}}{{30\left( {N + 1} \right)x^{4} \left( {\sin \left( \alpha \right)} \right)^{3} }}, \\ A_{{26}} = {\kern 1pt} & \frac{{h\left( {N\mu _{1} + \mu _{2} } \right)\left( {81{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} - 15{\kern 1pt} l_{2} ^{2} } \right)}}{{30\left( {N + 1} \right)x^{3} \left( {\sin \left( \alpha \right)} \right)^{3} }},A_{{27}} = \frac{{\left( {12{\kern 1pt} N\mu _{1} + 12{\kern 1pt} \mu _{2} } \right)\left( {l_{0} ^{2} - 1/3{\kern 1pt} l_{1} ^{2} } \right)h}}{{\left( {5{\kern 1pt} N + 5} \right)x\tan \left( \alpha \right)}}, \\ A_{{28}} = & {\kern 1pt} \frac{{ - h\left( {15{\kern 1pt} Nx^{2} k_{1} + 20{\kern 1pt} Nx^{2} \mu _{1} + 162{\kern 1pt} Nl_{0} ^{2} \mu _{1} + 36{\kern 1pt} Nl_{1} ^{2} \mu _{1} + 15{\kern 1pt} x^{2} k_{2} + 20{\kern 1pt} x^{2} \mu _{2} + 162{\kern 1pt} l_{0} ^{2} \mu _{2} + 36{\kern 1pt} l_{1} ^{2} \mu _{2} } \right)}}{{15\left( {N + 1} \right)x^{2} }}, \\ \end{aligned}$$
(87)
$$\begin{aligned} A_{{29}} = & \frac{{ - 18{\kern 1pt} h^{2} \left( {l_{0} ^{2} + 2/9{\kern 1pt} l_{1} ^{2} } \right)N\left( { - \mu _{2} + \mu _{1} } \right)}}{{5{\kern 1pt} x\left( {N + 2} \right)\left( {N + 1} \right)}},A_{{30}} = {\kern 1pt} \frac{{h\left( {N\mu _{1} + \mu _{2} } \right)\left( {81{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} - 15{\kern 1pt} l_{2} ^{2} } \right)}}{{30\left( {N + 1} \right)x\sin \left( \alpha \right)}},A_{{31}} = {\kern 1pt} \frac{h}{{3\left( {N + 1} \right)x^{3} \left( {\sin \left( \alpha \right)} \right)^{3} }} \\ & \left[ {\cos ^{2} \left( \alpha \right)\left[ {\left( {\left( {\mu _{1} + 3{\kern 1pt} k_{1} } \right)x^{2} + \left( { - 36{\kern 1pt} l_{0} ^{2} - 12{\kern 1pt} l_{1} ^{2} } \right)\mu _{1} } \right)N + \left( {\mu _{2} + 3{\kern 1pt} k_{2} } \right)x^{2} + \left( { - 36{\kern 1pt} l_{0} ^{2} - 12{\kern 1pt} l_{1} ^{2} } \right)\mu _{2} } \right] + N[\left( { - \mu _{1} - 3{\kern 1pt} k_{1} } \right)x^{2} } \right. \\ & \left. {\left. { + \frac{{351{\kern 1pt} \mu _{1} }}{{10}}\left( {l_{0} ^{2} + \frac{{88{\kern 1pt} l_{1} ^{2} }}{{351}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{117}}} \right)} \right] + \left( { - \mu _{2} - 3{\kern 1pt} k_{2} } \right)x^{2} + \frac{{351{\kern 1pt} \mu _{2} }}{{10}}\left( {l_{0} ^{2} + \frac{{88{\kern 1pt} l_{1} ^{2} }}{{351}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{117}}} \right)} \right], \\ A_{{32}} = & {\kern 1pt} \frac{{h\left( {N\mu _{1} + \mu _{2} } \right)\left( {27{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} + 3{\kern 1pt} l_{2} ^{2} } \right)}}{{6\left( {N + 1} \right)x^{2} \left( {\sin \left( \alpha \right)} \right)^{2} }},A_{{33}} = {\kern 1pt} \frac{{ - h\left( {N\mu _{1} + \mu _{2} } \right)\left( {27{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} + 3{\kern 1pt} l_{2} ^{2} } \right)}}{{6\left( {N + 1} \right)x^{3} \left( {\sin \left( \alpha \right)} \right)^{2} }}, \\ A_{{34}} = & \frac{{h^{2} N\left( { - \mu _{2} + \mu _{1} } \right)\left( {27{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} + 3{\kern 1pt} l_{2} ^{2} } \right)}}{{12x^{3} \left( {\sin \left( \alpha \right)} \right)^{2} \left( {N + 2} \right)\left( {N + 1} \right)}},A_{{35}} = {\kern 1pt} \frac{{6h}}{{5x^{2} \left( {N + 2} \right)\left( {N + 1} \right)\tan \left( \alpha \right)}}\left\{ {\frac{{ - 5Nh\tan \left( \alpha \right)}}{9}} \right. \\ & \left. {\left[ {\left( {\mu _{2} - \frac{3}{4}{\kern 1pt} k_{1} + \frac{3}{4}{\kern 1pt} k_{2} - \mu _{1} } \right)x^{2} + \frac{{\left( {81{\kern 1pt} \mu _{2} - 81{\kern 1pt} \mu _{1} } \right)\left( {l_{0} ^{2} + 2/9{\kern 1pt} l_{1} ^{2} } \right)}}{{10}}} \right] + \left( {N + 2} \right)\left( {l_{0} ^{2} - 1/3{\kern 1pt} l_{1} ^{2} } \right)\left( {N\mu _{1} + \mu _{2} } \right)x} \right\}, \\ A_{{36}} = & \frac{{9{\kern 1pt} h}}{{10{\kern 1pt} \left( {\sin \left( \alpha \right)} \right)^{4} x^{4} \left( {N + 2} \right)\left( {N + 1} \right)}}\left\{ {\frac{{\left( {5{\kern 1pt} \mu _{2} - 5{\kern 1pt} \mu _{1} } \right)Nh\cos ^{2} \left( \alpha \right)}}{9}{\kern 1pt} \left[ {x^{2} + \frac{{99{\kern 1pt} l_{0} ^{2} }}{{10}} + \frac{{28{\kern 1pt} l_{1} ^{2} }}{{15}} - \frac{{3{\kern 1pt} l_{2} ^{2} }}{2}} \right]} \right. \\ & \left. { + \frac{{x\left( {N\mu _{1} + \mu _{2} } \right)\sin \left( {2{\kern 1pt} \alpha } \right)\left( {N + 2} \right)}}{2}{\kern 1pt} \left( {l_{0} ^{2} + \frac{{56{\kern 1pt} l_{1} ^{2} }}{{27}} + \frac{{25{\kern 1pt} l_{2} ^{2} }}{9}} \right) + \frac{{ - 5\left( {\mu _{2} - \mu _{1} } \right)Nh}}{9}{\kern 1pt} \left( {x^{2} + \frac{{99{\kern 1pt} l_{0} ^{2} }}{{10}} + \frac{{28{\kern 1pt} l_{1} ^{2} }}{{15}} - \frac{{l_{2} ^{2} }}{2}} \right)} \right\} \\ & ,I_{0} = \rho _{1} h + \frac{{h\left( {\rho _{2} - \rho _{1} } \right)}}{{N + 1}},I_{1} = \frac{{h^{2} N\left( {\rho _{2} - \rho _{1} } \right)}}{{2{\kern 1pt} N^{2} + 6{\kern 1pt} N + 4}},f_{{E1}} = (f_{1}^{E} )_{1} + \left[ {(f_{1}^{E} )_{2} - (f_{1}^{E} )_{1} } \right]\left( {\frac{1}{2} + \frac{z}{h}} \right)^{N} , \\ f_{{E2}} = & (f_{2}^{E} )_{1} + \left[ {(f_{2}^{E} )_{2} - (f_{2}^{E} )_{1} } \right]\left( {\frac{1}{2} + \frac{z}{h}} \right)^{N} ,f_{{M1}} = (f_{1}^{M} )_{1} + \left[ {(f_{1}^{M} )_{2} - (f_{1}^{M} )_{1} } \right]\left( {\frac{1}{2} + \frac{z}{h}} \right)^{N} , \\ f_{{M2}} = & (f_{2}^{M} )_{1} + [(f_{2}^{M} )_{2} - (f_{2}^{M} )_{1} ]\left( {\frac{1}{2} + \frac{z}{h}} \right)^{N} . \\ \end{aligned}$$
(88)
$$\begin{aligned} B_{1} = & \frac{{h^{2} \left( {\mu _{2} - \mu _{1} } \right)N\left( {81{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} - 15{\kern 1pt} l_{2} ^{2} } \right)}}{{60{\kern 1pt} x\left( {N + 2} \right)\left( {N + 1} \right)\sin \left( \alpha \right)}},B_{2} = {\kern 1pt} \frac{{h^{2} \left( {\mu _{2} - \mu _{1} } \right)N\left( {27{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} + 3{\kern 1pt} l_{2} ^{2} } \right)}}{{6x^{2} \sin \left( \alpha \right)\left( {N + 2} \right)\left( {N + 1} \right)}}, \\ B_{3} = & {\kern 1pt} \frac{{h^{2} \left( {\mu _{2} - \mu _{1} } \right)N\left( {63{\kern 1pt} l_{0} ^{2} + 24{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)}}{{20x^{4} \left( {\sin \left( \alpha \right)} \right)^{3} \left( {N + 2} \right)\left( {N + 1} \right)}},B_{6} = \frac{{9h^{2} \left( {\mu _{2} - \mu _{1} } \right)N\left( {l_{0} ^{2} + 2/9{\kern 1pt} l_{1} ^{2} } \right)}}{{5x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} \left( {N + 2} \right)\left( {N + 1} \right)}}, \\ B_{5} = & {\kern 1pt} \frac{{h^{2} \left( {\mu _{2} - \mu _{1} } \right)N\left( {27{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} + 3{\kern 1pt} l_{2} ^{2} } \right)}}{{12x^{2} \left( {\sin \left( \alpha \right)} \right)^{2} \left( {N + 2} \right)\left( {N + 1} \right)}},B_{4} = \frac{{h^{2} \left( {\mu _{2} - \mu _{1} } \right)N\left( {81{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} - 15{\kern 1pt} l_{2} ^{2} } \right)}}{{60{\kern 1pt} x^{3} \left( {\sin \left( \alpha \right)} \right)^{3} \left( {N + 2} \right)\left( {N + 1} \right)}}, \\ B_{7} = & {\kern 1pt} \frac{{h^{2} \left( { - \mu _{2} + \mu _{1} } \right)N\left( {27{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} + 3{\kern 1pt} l_{2} ^{2} } \right)}}{{12x^{3} \left( {\sin \left( \alpha \right)} \right)^{2} \left( {N + 2} \right)\left( {N + 1} \right)}},B_{8} = \frac{{h\left( {N\mu _{1} + \mu _{2} } \right)\left( {18{\kern 1pt} l_{0} ^{2} + 4{\kern 1pt} l_{1} ^{2} } \right)}}{{5\left( {N + 1} \right)x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} }}, \\ B_{9} = & \frac{{9{\kern 1pt} h}}{{10{\kern 1pt} x^{2} \left( {\sin \left( \alpha \right)} \right)^{2} \left( {N + 2} \right)\left( {N + 1} \right)}}\left[ {\frac{{5h\left( {\mu _{2} - \mu _{1} } \right)N\cos ^{2} \left( \alpha \right)\left( {x^{2} + 9/5{\kern 1pt} l_{0} ^{2} + \frac{{32{\kern 1pt} l_{1} ^{2} }}{{15}} + l_{2} ^{2} } \right)}}{9}} \right. \\ {\kern 1pt} & \left. { + \frac{{x\sin (2{\kern 1pt} \alpha )\left( {N\mu _{1} + \mu _{2} } \right)\left( {N + 2} \right)\left( {\frac{{ - 5l_{2} ^{2} }}{3}{\kern 1pt} + l_{0} ^{2} + \frac{{4l_{1} ^{2} }}{3}} \right)}}{2} + {\kern 1pt} \frac{{ - 5h\left( {\mu _{2} - \mu _{1} } \right)\left( {x^{2} + \frac{{27{\kern 1pt} l_{0} ^{2} }}{{10}} + \frac{{8{\kern 1pt} l_{1} ^{2} }}{5} + \frac{{3{\kern 1pt} l_{2} ^{2} }}{2}} \right)N}}{9}} \right], \\ B_{{10}} = & \frac{{h\left( {N\mu _{1} + \mu _{2} } \right)\left( {27{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} + 3{\kern 1pt} l_{2} ^{2} } \right)}}{{3\left( {N + 1} \right)x^{2} \sin \left( \alpha \right)}},B_{{11}} = \frac{{h\left( {N\mu _{1} + \mu _{2} } \right)\left( {27{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} + 3{\kern 1pt} l_{2} ^{2} } \right)}}{{6\left( {N + 1} \right)x^{2} \left( {\sin \left( \alpha \right)} \right)^{2} }}, \\ B_{{12}} = & \frac{{h\left( {N\mu _{1} + \mu _{2} } \right)}}{{\left( {N + 1} \right)x^{2} \left( {\sin \left( \alpha \right)} \right)^{2} }}\left[ {\left( {x^{2} + \frac{{9{\kern 1pt} l_{0} ^{2} }}{{10}} + \frac{{8{\kern 1pt} l_{1} ^{2} }}{{15}} + \frac{{l_{2} ^{2} }}{2}} \right)\cos ^{2} \left( \alpha \right) - x^{2} + \frac{{ - 27{\kern 1pt} l_{0} ^{2} }}{{10}} + \frac{{ - 8{\kern 1pt} l_{1} ^{2} }}{5} + \frac{{ - 3l_{2} ^{2} }}{2}} \right], \\ B_{{13}} = & \frac{{h\left( {N\mu _{1} + \mu _{2} } \right)\left( {81{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} - 15{\kern 1pt} l_{2} ^{2} } \right)}}{{30\left( {N + 1} \right)x\sin \left( \alpha \right)}}, \\ \end{aligned}$$
(89)
$$\begin{gathered} B_{{14}} = \frac{{ - Nh^{2} \left( {\cos \left( \alpha \right)} \right)^{2} \left( {\left( { - \mu _{2} + \mu _{1} + 3{\kern 1pt} k_{1} - 3{\kern 1pt} k_{2} } \right)x^{2} + 18{\kern 1pt} \left( { - \mu _{2} + \mu _{1} } \right)\left( {l_{0} ^{2} + 4/9{\kern 1pt} l_{1} ^{2} + 1/3{\kern 1pt} l_{2} ^{2} } \right)} \right)}}{{6x^{3} \left( {\sin \left( \alpha \right)} \right)^{3} \left( {N + 2} \right)\left( {N + 1} \right)}} \hfill \\ + \frac{{3h\left( {l_{0} ^{2} + 4/9{\kern 1pt} l_{1} ^{2} - 1/3{\kern 1pt} l_{2} ^{2} } \right)\left( {N\mu _{1} + \mu _{2} } \right)\sin \left( {2{\kern 1pt} \alpha } \right)}}{{2x^{2} \left( {\sin \left( \alpha \right)} \right)^{3} \left( {N + 1} \right)}} + {\kern 1pt} \frac{{Nh^{2} }}{{6x^{3} \left( {\sin \left( \alpha \right)} \right)^{3} \left( {N + 2} \right)\left( {N + 1} \right)}}[\left( { - \mu _{2} + \mu _{1} + 3{\kern 1pt} k_{1} - 3{\kern 1pt} k_{2} } \right)x^{2} \hfill \\ + (\frac{{ - 189{\kern 1pt} \mu _{2} }}{{10}} + \frac{{189{\kern 1pt} \mu _{1} }}{{10}})(l_{0} ^{2} + \frac{{8{\kern 1pt} l_{1} ^{2} }}{{21}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{21}})],B_{{15}} = \frac{{39{\kern 1pt} h}}{{10{\kern 1pt} x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} \left( {N + 2} \right)\left( {N + 1} \right)}}\{ \hfill \\ - \frac{{20{\kern 1pt} h\left( {\cos \left( \alpha \right)} \right)^{2} N}}{{117}}[(\mu _{1} - \mu _{2} + \frac{{3{\kern 1pt} k_{1} }}{4} + \frac{{ - 3{\kern 1pt} k_{2} }}{4})x^{2} + \frac{{63{\kern 1pt} \mu _{2} - 63{\kern 1pt} \mu _{1} }}{{40}}(l_{0} ^{2} + \frac{{16{\kern 1pt} l_{1} ^{2} }}{{21}} + \frac{{ - 5{\kern 1pt} l_{2} ^{2} }}{7})] \hfill \\ + {\kern 1pt} \frac{{\left( {N\mu _{1} + \mu _{2} } \right)\sin \left( {2{\kern 1pt} \alpha } \right)\left( {N + 2} \right)x}}{2}(l_{0} ^{2} + \frac{{176{\kern 1pt} l_{1} ^{2} }}{{117}} - \frac{{5{\kern 1pt} l_{2} ^{2} }}{{39}}) + \frac{{20{\kern 1pt} hN}}{{117}}[(\mu _{1} - \mu _{2} + \frac{{3{\kern 1pt} k_{1} }}{4} + \frac{{ - 3{\kern 1pt} k_{2} }}{4})x^{2} \hfill \\ + \frac{{27{\kern 1pt} \mu _{2} - 27{\kern 1pt} \mu _{1} }}{{40}}(l_{0} ^{2} + \frac{{ - 8{\kern 1pt} l_{1} ^{2} }}{9} + \frac{{ - 5{\kern 1pt} l_{2} ^{2} }}{3})]\} ,B_{{16}} = \frac{{ - h\left( {N\mu _{1} + \mu _{2} } \right)\left( {27{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} + 3{\kern 1pt} l_{2} ^{2} } \right)}}{{6\left( {N + 1} \right)x^{3} \left( {\sin \left( \alpha \right)} \right)^{2} }}, \hfill \\ B_{{17}} = \frac{{h\left( {N\mu _{1} + \mu _{2} } \right)\left( {81{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} - 15{\kern 1pt} l_{2} ^{2} } \right)}}{{30\left( {N + 1} \right)x^{3} \left( {\sin \left( \alpha \right)} \right)^{3} }}, \hfill \\ B_{{18}} = \frac{{h\left( {N\mu _{1} + \mu _{2} } \right)}}{{\left( {N + 1} \right)x^{3} \sin ^{2} \left( \alpha \right)}}[(x^{2} + \frac{{ - 9{\kern 1pt} l_{0} ^{2} }}{{10}} + \frac{{ - 8{\kern 1pt} l_{1} ^{2} }}{{15}} + \frac{{ - {\kern 1pt} l_{2} ^{2} }}{2})\cos ^{2} \left( \alpha \right) - x^{2} + \frac{{27{\kern 1pt} l_{0} ^{2} }}{{10}} + \frac{{8l_{1} ^{2} }}{5} + \frac{{3{\kern 1pt} l_{2} ^{2} }}{2}], \hfill \\ \end{gathered}$$
(90)
$$\begin{aligned} B_{{19}} = & {\kern 1pt} \frac{{9h}}{{2x^{4} \left( {\sin \left( \alpha \right)} \right)^{3} \left( {N + 2} \right)\left( {N + 1} \right)}}\left\{ { - \frac{{7{\kern 1pt} hN\left( {\cos \left( \alpha \right)} \right)^{2} }}{{27}}} \right.\left[ {x^{2} \left( {\mu _{1} - \mu _{2} + \frac{{3k_{1} }}{7} + \frac{{ - 3{\kern 1pt} k_{2} }}{7}} \right) + \frac{{18{\kern 1pt} \mu _{2} - 18{\kern 1pt} \mu _{1} }}{5}\left( {l_{0} ^{2} + \frac{{44{\kern 1pt} l_{1} ^{2} }}{{63}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{14}}} \right)} \right] \\ & \left. { + \frac{{x\left( {N\mu _{1} + \mu _{2} } \right)\sin \left( {2{\kern 1pt} \alpha } \right)\left( {N + 2} \right)}}{2}\left( {l_{0} ^{2} + \frac{{40{\kern 1pt} l_{1} ^{2} }}{{27}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{9}} \right) + \frac{{7{\kern 1pt} hN}}{{27}}\left[ {x^{2} \left( {\mu _{1} - \mu _{2} + \frac{{3k_{1} }}{7} + \frac{{ - 3{\kern 1pt} k_{2} }}{7}} \right) + \frac{{27{\kern 1pt} \mu _{2} - 27{\kern 1pt} \mu _{1} }}{{10}}\left( {l_{0} ^{2} + \frac{{8{\kern 1pt} l_{1} ^{2} }}{{21}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{21}}} \right)} \right]} \right\}, \\ B_{{20}} = & \frac{{h\left( {N\mu _{1} + \mu _{2} } \right)}}{{30\left( {N + 1} \right)x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} }}\left[ {80{\kern 1pt} \left( {\cos \left( \alpha \right)} \right)^{4} l_{1} ^{2} - 60{\kern 1pt} \left( {\cos \left( \alpha \right)} \right)^{4} l_{2} ^{2} - 30{\kern 1pt} \left( {\cos \left( \alpha \right)} \right)^{2} x^{2} + 108{\kern 1pt} \left( {\cos \left( \alpha \right)} \right)^{2} l_{0} ^{2} + 104{\kern 1pt} \left( {\cos \left( \alpha \right)} \right)^{2} l_{1} ^{2} } \right. \\ & \left. { + 120{\kern 1pt} \left( {\cos \left( \alpha \right)} \right)^{2} l_{2} ^{2} + 30{\kern 1pt} x^{2} - 81{\kern 1pt} l_{0} ^{2} - 48{\kern 1pt} l_{1} ^{2} - 45{\kern 1pt} l_{2} ^{2} } \right], \\ B_{{21}} = & \frac{h}{{\left( {\sin \left( \alpha \right)} \right)^{4} x^{4} \left( {N + 2} \right)\left( {N + 1} \right)}}\left\{ {\frac{{ - N\left( { - \mu _{2} + \mu _{1} } \right)h\left( {\cos \left( \alpha \right)} \right)^{4} }}{2}\left( {x^{2} - \frac{{18{\kern 1pt} l_{0} ^{2} }}{5} - \frac{{16{\kern 1pt} l_{1} ^{2} }}{{15}}} \right)} \right. \\ & + x\sin \left( \alpha \right)\cos ^{3} \left( \alpha \right)\left( {N\mu _{1} + \mu _{2} } \right)\left( {N + 2} \right)\left( {x^{2} - \frac{{9{\kern 1pt} l_{0} ^{2} }}{{10}} - \frac{{16{\kern 1pt} l_{1} ^{2} }}{5} + \frac{{3{\kern 1pt} l_{2} ^{2} }}{2}} \right) + N\left( { - \mu _{2} + \mu _{1} } \right)h\left( {\cos \left( \alpha \right)} \right)^{2} \left( {x^{2} + \frac{{ - 63{\kern 1pt} l_{0} ^{2} }}{{20}} + \frac{{ - 32{\kern 1pt} l_{1} ^{2} }}{{15}} + \frac{{ - 3{\kern 1pt} l_{2} ^{2} }}{4}} \right) \\ & \left. { + \frac{{ - \sin \left( {2{\kern 1pt} \alpha } \right)\left( {N\mu _{1} + \mu _{2} } \right)\left( {N + 2} \right)x}}{2}\left( {x^{2} + \frac{{4{\kern 1pt} l_{1} ^{2} }}{3} + 2{\kern 1pt} l_{2} ^{2} } \right) + \frac{{ - N\left( { - \mu _{2} + \mu _{1} } \right)h}}{2}\left( {x^{2} + \frac{{ - 27{\kern 1pt} l_{0} ^{2} }}{{10}} + \frac{{ - 8{\kern 1pt} l_{1} ^{2} }}{5} + \frac{{ - 3{\kern 1pt} l_{2} ^{2} }}{2}} \right)} \right\}, \\ B_{{22}} = & \frac{{ - 9{\kern 1pt} h}}{{10{\kern 1pt} x^{3} \sin ^{2} \left( \alpha \right)\left( {N + 2} \right)\left( {N + 1} \right)}}\left[ {\frac{{5hN\left( { - \mu _{2} + \mu _{1} } \right)\cos ^{2} \left( \alpha \right)}}{9}\left( {x^{2} + \frac{{ - 18{\kern 1pt} l_{0} ^{2} }}{5} + \frac{{ - 8{\kern 1pt} l_{1} ^{2} }}{3} + l_{2} ^{2} } \right)} \right. \\ & \left. { + {\kern 1pt} \frac{{\sin \left( {2{\kern 1pt} \alpha } \right)\left( {N\mu _{1} + \mu _{2} } \right)\left( {N + 2} \right)x}}{2}\left( {l_{0} ^{2} + \frac{{16{\kern 1pt} l_{1} ^{2} }}{{27}} + 5/9{\kern 1pt} l_{2} ^{2} } \right) + \frac{{ - 5N\left( { - \mu _{2} + \mu _{1} } \right)h}}{9}\left( {x^{2} + \frac{{ - 27{\kern 1pt} l_{0} ^{2} }}{{10}} + \frac{{ - 8{\kern 1pt} l_{1} ^{2} }}{5} + \frac{{ - 3{\kern 1pt} l_{2} ^{2} }}{2}} \right)} \right], \\ \end{aligned}$$
(91)
$$\begin{aligned} B_{{23}} = {\kern 1pt} & \frac{{7h\cos \left( \alpha \right)}}{{3\left( {N + 1} \right)x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} }}\left\{ {x^{2} N\cos ^{2} \left( \alpha \right)\left( {\mu _{1} + \frac{{3{\kern 1pt} k_{1} }}{7}} \right) + \frac{{ - 198{\kern 1pt} N\mu _{1} \cos ^{2} \left( \alpha \right)}}{{35}}\left( {l_{0} ^{2} + \frac{{112{\kern 1pt} l_{1} ^{2} }}{{99}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{33}}} \right) + x^{2} \cos ^{2} \left( \alpha \right)\left( {\mu _{2} + \frac{{3k_{2} }}{7}} \right)} \right. \\ & + \frac{{ - 198{\kern 1pt} \mu _{2} \cos ^{2} \left( \alpha \right)}}{{35}}\left( {l_{0} ^{2} + \frac{{112{\kern 1pt} l_{1} ^{2} }}{{99}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{33}}} \right) + x^{2} N\left( { - \mu _{1} + \frac{{ - 3{\kern 1pt} k_{1} }}{7}} \right) + \frac{{\mu _{1} N}}{{10}}\left( {27{\kern 1pt} l_{0} ^{2} + \frac{{72{\kern 1pt} l_{1} ^{2} }}{7} + \frac{{45{\kern 1pt} l_{2} ^{2} }}{7}} \right) + x^{2} \left( { - \mu _{2} + \frac{{ - 3{\kern 1pt} k_{2} }}{7}} \right) \\ & \left. { + \frac{{\mu _{2} }}{{10}}\left( {27{\kern 1pt} l_{0} ^{2} + \frac{{72{\kern 1pt} l_{1} ^{2} }}{7} + \frac{{45{\kern 1pt} l_{2} ^{2} }}{7}} \right)} \right\},B_{{24}} = \frac{{7h}}{{3\left( {N + 1} \right)x^{4} \sin ^{3} \left( \alpha \right)}}\left\{ {x^{2} N\cos ^{2} \left( \alpha \right)\left( {\mu _{1} + \frac{{3{\kern 1pt} k_{1} }}{7}} \right)} \right. \\ & + \frac{{ - 198{\kern 1pt} N\mu _{1} \cos ^{2} \left( \alpha \right)}}{{35}}\left( {l_{0} ^{2} + \frac{{92{\kern 1pt} l_{1} ^{2} }}{{99}} + \frac{{10{\kern 1pt} l_{2} ^{2} }}{{33}}} \right) + x^{2} \cos ^{2} \left( \alpha \right)\left( {\mu _{2} + \frac{{3k_{2} }}{7}} \right) + \frac{{ - 198{\kern 1pt} \mu _{2} \cos ^{2} \left( \alpha \right)}}{{35}}\left( {l_{0} ^{2} + \frac{{92{\kern 1pt} l_{1} ^{2} }}{{99}} + \frac{{10{\kern 1pt} l_{2} ^{2} }}{{33}}} \right) \\ & \left. { + x^{2} N\left( { - \mu _{1} + \frac{{ - 3{\kern 1pt} k_{1} }}{7}} \right) + \frac{{\mu _{1} N}}{{10}}\left( {27{\kern 1pt} l_{0} ^{2} + \frac{{72{\kern 1pt} l_{1} ^{2} }}{7} + \frac{{45{\kern 1pt} l_{2} ^{2} }}{7}} \right) + x^{2} \left( { - \mu _{2} + \frac{{ - 3{\kern 1pt} k_{2} }}{7}} \right) + \frac{{\mu _{2} }}{{10}}\left( {27{\kern 1pt} l_{0} ^{2} + \frac{{72{\kern 1pt} l_{1} ^{2} }}{7} + \frac{{45{\kern 1pt} l_{2} ^{2} }}{7}} \right)} \right\}, \\ B_{{25}} = & \frac{h}{{3\left( {N + 1} \right)x^{3} \left( {\sin \left( \alpha \right)} \right)^{3} }}\left\{ {x^{2} N\cos ^{2} \left( \alpha \right)\left( {\mu _{1} + 3{\kern 1pt} k_{1} } \right) + 18N\cos ^{2} \left( \alpha \right){\kern 1pt} \left( {l_{0} ^{2} + \frac{{2{\kern 1pt} l_{1} ^{2} }}{9} + \frac{{{\kern 1pt} l_{2} ^{2} }}{3}} \right)\mu _{1} + x^{2} \cos ^{2} \left( \alpha \right){\kern 1pt} \left( {\mu _{2} + 3{\kern 1pt} k_{2} } \right)} \right. \\ & + 18{\kern 1pt} \cos ^{2} \left( \alpha \right){\kern 1pt} \left( {l_{0} ^{2} + \frac{{2{\kern 1pt} l_{1} ^{2} }}{9} + \frac{{{\kern 1pt} l_{2} ^{2} }}{3}} \right)\mu _{2} + \left( { - \mu _{1} - 3{\kern 1pt} k_{1} } \right)x^{2} N + \frac{{ - 189{\kern 1pt} N\mu _{1} }}{{10}}\left( {l_{0} ^{2} + \frac{{8{\kern 1pt} l_{1} ^{2} }}{{21}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{21}}} \right) + \left( { - \mu _{2} - 3{\kern 1pt} k_{2} } \right)x^{2} \\ & \left. { + \frac{{ - 189{\kern 1pt} \mu _{2} }}{{10}}\left( {l_{0} ^{2} + \frac{{8{\kern 1pt} l_{1} ^{2} }}{{21}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{21}}} \right)} \right\},B_{{26}} = \frac{{h\left( {N\mu _{1} + \mu _{2} } \right)\left( {27{\kern 1pt} l_{0} ^{2} + 16{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)}}{{15\left( {N + 1} \right)x}}, \\ \end{aligned}$$
(92)
$$\begin{aligned} B_{{27}} = & \frac{{4h}}{{3\left( {N + 1} \right)x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} }}\left\{ {x^{2} N\cos ^{2} \left( \alpha \right)\left( {\mu _{1} + \frac{{3{\kern 1pt} k_{1} }}{4}} \right) - \frac{{153{\kern 1pt} N\mu _{1} \left( {\cos \left( \alpha \right)} \right)^{2} }}{{20}}\left( {l_{0} ^{2} + \frac{{164{\kern 1pt} l_{1} ^{2} }}{{153}} - \frac{{5{\kern 1pt} l_{2} ^{2} }}{{51}}} \right) + x^{2} \cos ^{2} \left( \alpha \right)\left( {\mu _{2} + \frac{{3{\kern 1pt} k_{2} }}{4}} \right)} \right. \\ & - \frac{{153{\kern 1pt} \mu _{2} \left( {\cos \left( \alpha \right)} \right)^{2} }}{{20}}\left( {l_{0} ^{2} + \frac{{164{\kern 1pt} l_{1} ^{2} }}{{153}} - \frac{{5{\kern 1pt} l_{2} ^{2} }}{{51}}} \right) + x^{2} N\left( { - \mu _{1} + \frac{{ - 3{\kern 1pt} k_{1} }}{4}} \right) + \mu _{1} N\left( {\frac{{27{\kern 1pt} l_{0} ^{2} }}{{40}} + \frac{{ - 24{\kern 1pt} l_{1} ^{2} }}{{40}} + \frac{{ - 45{\kern 1pt} l_{2} ^{2} }}{{40}}} \right) + \left( { - \mu _{2} + \frac{{ - 3{\kern 1pt} k_{2} }}{4}} \right)x^{2} \\ & \left. { + \mu _{2} \left( {\frac{{27{\kern 1pt} l_{0} ^{2} }}{{40}} + \frac{{ - 24{\kern 1pt} l_{1} ^{2} }}{{40}} + \frac{{ - 45{\kern 1pt} l_{2} ^{2} }}{{40}}} \right)} \right\},B_{{28}} = \frac{{h\left( {N\mu _{1} + \mu _{2} } \right)\left( {27{\kern 1pt} l_{0} ^{2} + 16{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)}}{{30{\kern 1pt} N + 30}}, \\ B_{{29}} = & \frac{{h\cos \left( \alpha \right)\left( {N\mu _{1} + \mu _{2} } \right)\left( {207{\kern 1pt} l_{0} ^{2} + 136{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)}}{{30\left( {N + 1} \right)x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} }},B_{{30}} = \frac{{h^{2} \left( {\mu _{2} - \mu _{1} } \right)N\left( {27{\kern 1pt} l_{0} ^{2} + 16{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)}}{{30x\left( {N + 2} \right)\left( {N + 1} \right)}}, \\ B_{{31}} = & \frac{{ - 2h\left( {N\mu _{1} + \mu _{2} } \right)\left( {9{\kern 1pt} l_{0} ^{2} + 2{\kern 1pt} l_{1} ^{2} + 3{\kern 1pt} l_{2} ^{2} } \right)\cos \left( \alpha \right)}}{{3\left( {\sin \left( \alpha \right)} \right)^{2} \left( {N + 1} \right)x^{3} }},B_{{32}} = \frac{{h\left( {N\mu _{1} + \mu _{2} } \right)\left( {63{\kern 1pt} l_{0} ^{2} + 24{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)\cos \left( \alpha \right)}}{{10\left( {\sin \left( \alpha \right)} \right)^{2} \left( {N + 1} \right)x^{2} }}, \\ B_{{33}} = & \frac{{h^{2} \left( {\mu _{2} - \mu _{1} } \right)N\left( {27{\kern 1pt} l_{0} ^{2} + 16{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)}}{{\left( {60{\kern 1pt} N + 120} \right)\left( {N + 1} \right)}},B_{{34}} = {\kern 1pt} \frac{{h\left( {N\mu _{1} + \mu _{2} } \right)\left( {63{\kern 1pt} l_{0} ^{2} + 24{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)}}{{10\left( {N + 1} \right)x^{4} \left( {\sin \left( \alpha \right)} \right)^{3} }}, \\ \end{aligned}$$
(93)
$$\begin{aligned} C_{1} = & \frac{{h\left( {N\mu _{1} + \mu _{2} } \right)\left( {30{\kern 1pt} \left( {\cos \left( \alpha \right)} \right)^{2} x^{2} - 12{\kern 1pt} \left( {\cos \left( \alpha \right)} \right)^{2} l_{0} ^{2} + 24{\kern 1pt} \left( {\cos \left( \alpha \right)} \right)^{2} l_{1} ^{2} - 30{\kern 1pt} x^{2} + 27{\kern 1pt} l_{0} ^{2} + 16{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)}}{{30\left( {N + 1} \right)x^{3} \left( {\sin \left( \alpha \right)} \right)^{2} }}, \\ C_{2} = & \frac{h}{{x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} \left( {N + 2} \right)\left( {N + 1} \right)}}\left\{ {\frac{{2{\kern 1pt} hx^{2} N\cos ^{3} \left( \alpha \right)}}{3}\left( {\mu _{1} - \mu _{2} + \frac{{3k_{1} }}{4} + \frac{{ - 3{\kern 1pt} k_{2} }}{4}} \right)} \right. \\ & + \frac{{11hN\cos ^{3} \left( \alpha \right)\left( { - \mu _{2} + \mu _{1} } \right)}}{4}\left( {l_{0} ^{2} - \frac{{32{\kern 1pt} l_{1} ^{2} }}{{165}} + \frac{{ - {\kern 1pt} l_{2} ^{2} }}{{11}}} \right) + \frac{{{\kern 1pt} \left( {N + 2} \right)\left( {N\mu _{1} + \mu _{2} } \right)x\sin \left( {2{\kern 1pt} \alpha } \right)\cos \left( \alpha \right)}}{2}\left( { - \frac{{24{\kern 1pt} l_{0} ^{2} }}{5} - \frac{{52{\kern 1pt} l_{1} ^{2} }}{5} + x^{2} } \right) \\ & + \frac{{ - 2{\kern 1pt} hx^{2} N\cos \left( \alpha \right)}}{3}\left( {\mu _{1} - \mu _{2} + \frac{{3k_{1} }}{4} + \frac{{ - 3{\kern 1pt} k_{2} }}{4}} \right) + \frac{{ - 11hN\cos \left( \alpha \right)\left( { - \mu _{2} + \mu _{1} } \right)}}{4}\left( {l_{0} ^{2} + \frac{{8{\kern 1pt} l_{1} ^{2} }}{{33}} + \frac{{ - {\kern 1pt} l_{2} ^{2} }}{{11}}} \right) \\ & \left. { - \left( {N + 2} \right)\left( {N\mu _{1} + \mu _{2} } \right)\sin \left( \alpha \right)x\left( {\frac{{ - 3{\kern 1pt} l_{0} ^{2} }}{{10}} + \frac{{ - 16{\kern 1pt} l_{1} ^{2} }}{{15}} + \frac{{{\kern 1pt} l_{2} ^{2} }}{2} + x^{2} } \right)} \right\}, \\ C_{3} = & \frac{h}{{\left( {N + 1} \right)x^{4} \left( {\tan \left( \alpha \right)} \right)^{4} }}\left\{ {\left( {\left( {\left( {\frac{{4x^{2} }}{3} - 2{\kern 1pt} l_{0} ^{2} - 4{\kern 1pt} l_{1} ^{2} } \right)\mu _{1} + x^{2} k_{1} } \right)N + \left( {\frac{{4x^{2} }}{3} - 2{\kern 1pt} l_{0} ^{2} - 4{\kern 1pt} l_{1} ^{2} } \right)\mu _{2} + x^{2} k_{2} } \right)\left( {\tan \left( \alpha \right)} \right)^{2} } \right. \\ & \left. { + \frac{{\left( {18{\kern 1pt} N\mu _{1} + 18{\kern 1pt} \mu _{2} } \right)\left( {l_{0} ^{2} + \frac{{4l_{1} ^{2} }}{3}} \right)}}{5}} \right\},C_{4} = \frac{h}{{\left( {N + 1} \right)x^{4} \left( {\tan \left( \alpha \right)} \right)^{3} }}\left\{ {\left( {\left( {\left( {\frac{{4x^{2} }}{3} - 2{\kern 1pt} l_{0} ^{2} - 4{\kern 1pt} l_{1} ^{2} } \right)\mu _{1} + x^{2} k_{1} } \right)N + \left( {\frac{{4x^{2} }}{3} - 2{\kern 1pt} l_{0} ^{2} - 4{\kern 1pt} l_{1} ^{2} } \right)\mu _{2} + x^{2} k_{2} } \right)} \right. \\ & \left. {\left( {\tan \left( \alpha \right)} \right)^{2} + \frac{{\left( {18{\kern 1pt} N\mu _{1} + 18{\kern 1pt} \mu _{2} } \right)\left( {l_{0} ^{2} + \frac{{4l_{1} ^{2} }}{3}} \right)}}{5}} \right\}, \\ \end{aligned}$$
(94)
$$\begin{aligned} C_{5} = & \frac{{ - 7h\cos \left( \alpha \right)}}{{3x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} \left( {N + 1} \right)}}\left\{ {\left( {\mu _{1} + \frac{{3{\kern 1pt} k_{1} }}{7}} \right)x^{2} N\left( {\cos \left( \alpha \right)} \right)^{2} - \frac{{21{\kern 1pt} N\mu _{1} \left( {\cos \left( \alpha \right)} \right)^{2} }}{5}\left( {l_{0} ^{2} + \frac{{256{\kern 1pt} l_{1} ^{2} }}{{147}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{49}}} \right)} \right. \\ & + \left( {\mu _{2} + \frac{{3{\kern 1pt} k_{2} }}{7}} \right)x^{2} \left( {\cos \left( \alpha \right)} \right)^{2} - \frac{{21{\kern 1pt} \mu _{2} \left( {\cos \left( \alpha \right)} \right)^{2} }}{5}\left( {l_{0} ^{2} + \frac{{256{\kern 1pt} l_{1} ^{2} }}{{147}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{49}}} \right) - \left( {\mu _{1} + \frac{{3{\kern 1pt} k_{1} }}{7}} \right)x^{2} N + \frac{{87{\kern 1pt} N\mu _{1} }}{{70}}\left( {l_{0} ^{2} + \frac{{136{\kern 1pt} l_{1} ^{2} }}{{87}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{29}}} \right) \\ & \left. { - \left( {\mu _{2} + \frac{{3{\kern 1pt} k_{2} }}{7}} \right)x^{2} + \frac{{87{\kern 1pt} \mu _{2} }}{{70}}\left( {l_{0} ^{2} + \frac{{136{\kern 1pt} l_{1} ^{2} }}{{87}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{29}}} \right)} \right\}, \\ C_{6} = & \frac{{\left( {\left( {\left( {k_{1} + \frac{{ - 2{\kern 1pt} \mu _{1} }}{3}} \right)x^{2} + \frac{{4{\kern 1pt} \mu _{1} }}{5}\left( {l_{0} ^{2} + 3{\kern 1pt} l_{1} ^{2} } \right)} \right)N + \left( {\frac{{ - 2{\kern 1pt} \mu _{2} }}{3} + k_{2} } \right)x^{2} + \frac{{4{\kern 1pt} \mu _{2} }}{5}\left( {l_{0} ^{2} + 3{\kern 1pt} l_{1} ^{2} } \right)} \right)h}}{{\left( {N + 1} \right)x^{3} \tan \left( \alpha \right)}}, \\ C_{7} = & - \frac{h}{{x^{3} \left( {\tan \left( \alpha \right)} \right)^{2} \left( {N + 2} \right)\left( {N + 1} \right)}}\left\{ {\left( {N + 2} \right)\left( {\frac{{3{\kern 1pt} l_{0} ^{2} }}{{10}} + \frac{{16{\kern 1pt} l_{1} ^{2} }}{{15}} + \frac{{ - {\kern 1pt} l_{2} ^{2} }}{2} + x^{2} } \right)\left( {\tan \left( \alpha \right)} \right)^{2} x\left( {N\mu _{1} + \mu _{2} } \right)} \right. \\ & + \frac{{ - {\kern 1pt} h}}{3}\left( {\mu _{1} - \mu _{2} + \frac{{ - 3{\kern 1pt} k_{1} }}{2} + \frac{{3{\kern 1pt} k_{2} }}{2}} \right)x^{2} N\tan \left( \alpha \right) + \frac{{ - 7h}}{5}\left( { - \mu _{2} + \mu _{1} } \right)\left( {l_{0} ^{2} + \frac{{ - 4{\kern 1pt} l_{1} ^{2} }}{7}} \right)N\tan \left( \alpha \right) \\ & \left. { + \frac{{{\kern 1pt} \left( {27{\kern 1pt} N + 54} \right)}}{{10}}\left( {l_{0} ^{2} + \frac{{8{\kern 1pt} l_{1} ^{2} }}{{81}} - \frac{{5{\kern 1pt} l_{2} ^{2} }}{{27}}} \right)x\left( {N\mu _{1} + \mu _{2} } \right)} \right\}, \\ \end{aligned}$$
(95)
$$\begin{aligned} C_{8} = & \frac{{ - h}}{{x^{4} \left( {\tan \left( \alpha \right)} \right)^{2} \left( {N + 2} \right)\left( {N + 1} \right)}}\left\{ {\left( {N + 2} \right)\left( {\frac{{ - 3{\kern 1pt} l_{0} ^{2} }}{{10}} - \frac{{16{\kern 1pt} l_{1} ^{2} }}{{15}} + \frac{{l_{2} ^{2} }}{2} + x^{2} } \right)\left( {\tan \left( \alpha \right)} \right)^{2} x\left( {N\mu _{1} + \mu _{2} } \right)} \right. \\ & + \frac{{2h}}{3}\left( {\mu _{1} - \mu _{2} + \frac{{3k_{1} }}{4} + \frac{{ - 3{\kern 1pt} k_{2} }}{4}} \right)x^{2} N\tan \left( \alpha \right) + \frac{{7{\kern 1pt} h}}{5}\left( { - \mu _{2} + \mu _{1} } \right)\left( {l_{0} ^{2} + \frac{{ - 4l_{1} ^{2} }}{7}} \right)N\tan \left( \alpha \right) \\ & \left. { + \frac{{{\kern 1pt} \left( {33{\kern 1pt} N + 66} \right)}}{{10}}\left( {l_{0} ^{2} + \frac{{112{\kern 1pt} l_{1} ^{2} }}{{99}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{33}}} \right)x\left( {N\mu _{1} + \mu _{2} } \right)} \right\},C_{9} = \frac{{h\left( {N\mu _{1} + \mu _{2} } \right)\left( {207{\kern 1pt} l_{0} ^{2} + 136{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)\cos \left( \alpha \right)}}{{30x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} \left( {N + 1} \right)}}, \\ C_{{10}} = & \frac{{h\left( {N\mu _{1} + \mu _{2} } \right)\left( {27{\kern 1pt} l_{0} ^{2} + 16{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)}}{{30x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} \left( {N + 1} \right)}},C_{{11}} = \frac{{h\left( {N\mu _{1} + \mu _{2} } \right)\left( {27{\kern 1pt} l_{0} ^{2} + 16{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)}}{{30{\kern 1pt} N + 30}}, \\ C_{{12}} = & \frac{{3h}}{{10\left( {\sin \left( \alpha \right)} \right)^{3} x^{3} \left( {N + 2} \right)\left( {N + 1} \right)}}\left\{ {\left( {N + 2} \right)\left( {N\mu _{1} + \mu _{2} } \right)x\left( {l_{0} ^{2} + \frac{{32{\kern 1pt} l_{1} ^{2} }}{9} + \frac{{ - 5l_{2} ^{2} }}{3}} \right)\sin \left( \alpha \right)} \right. \\ & \left. { + 5{\kern 1pt} \cos \left( \alpha \right)\left( {l_{0} ^{2} + \frac{{ - {\kern 1pt} l_{2} ^{2} }}{3}} \right)N\left( { - \mu _{2} + \mu _{1} } \right)h} \right\},C_{{13}} = \frac{{3h}}{{10\left( {\sin \left( \alpha \right)} \right)^{3} x^{4} \left( {N + 2} \right)\left( {N + 1} \right)}}\left\{ {\left( {N + 2} \right)\left( {N\mu _{1} + \mu _{2} } \right)x} \right. \\ & \left. {\left( {l_{0} ^{2} + \frac{{32{\kern 1pt} l_{1} ^{2} }}{9} + \frac{{ - 5l_{2} ^{2} }}{3}} \right)\sin \left( \alpha \right) + \frac{{25}}{2}{\kern 1pt} \left( { - \mu _{2} + \mu _{1} } \right)\cos \left( \alpha \right)\left( {l_{0} ^{2} + \frac{{32{\kern 1pt} l_{1} ^{2} }}{{45}} + \frac{{{\kern 1pt} l_{2} ^{2} }}{5}} \right)Nh} \right\}, \\ C_{{14}} = & \frac{{h\left( {N\mu _{1} + \mu _{2} } \right)\left( {27{\kern 1pt} l_{0} ^{2} + 16{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)}}{{15\left( {N + 1} \right)x^{2} \left( {\sin \left( \alpha \right)} \right)^{2} }},C_{{15}} = \frac{{ - h\left( {N\mu _{1} + \mu _{2} } \right)\left( {9{\kern 1pt} l_{0} ^{2} + 4{\kern 1pt} l_{1} ^{2} - 3{\kern 1pt} l_{2} ^{2} } \right)\cos \left( \alpha \right)}}{{3\left( {\sin \left( \alpha \right)} \right)^{3} \left( {N + 1} \right)x^{3} }}, \\ C_{{16}} = & \frac{{3h}}{{5x^{2} \left( {N + 2} \right)\left( {N + 1} \right)\tan \left( \alpha \right)}}\left\{ {\left( {N + 2} \right)\left( {N\mu _{1} + \mu _{2} } \right)x\left( {l_{0} ^{2} + \frac{{32{\kern 1pt} l_{1} ^{2} }}{9} + \frac{{ - 5{\kern 1pt} l_{2} ^{2} }}{3}} \right)\tan \left( \alpha \right)} \right. \\ & \left. { + \frac{{10h}}{3}\left( {l_{0} ^{2} + \frac{{{\kern 1pt} l_{1} ^{2} }}{2}} \right)N\left( { - \mu _{2} + \mu _{1} } \right)} \right\},C_{{17}} = {\kern 1pt} \frac{{ - h\left( {N\mu _{1} + \mu _{2} } \right)\left( {43{\kern 1pt} l_{0} ^{2} + 24{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)\cos \left( \alpha \right)}}{{10\left( {N + 1} \right)x^{2} \left( {\sin \left( \alpha \right)} \right)^{2} }}, \\ C_{{18}} = & {\kern 1pt} \frac{{ - h\left( {N\mu _{1} + \mu _{2} } \right)\left( {87{\kern 1pt} l_{0} ^{2} + 56{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)\cos \left( \alpha \right)}}{{10\left( {\sin \left( \alpha \right)} \right)^{3} \left( {N + 1} \right)x^{4} }},C_{{19}} = \frac{{ - 2h\left( {N\mu _{1} + \mu _{2} } \right)\left( {l_{0} ^{2} - 2{\kern 1pt} l_{1} ^{2} } \right)}}{{5\left( {N + 1} \right)x\tan \left( \alpha \right)}}, \\ \end{aligned}$$
(96)
$$\begin{aligned} C_{{20}} = & \frac{{ - 3h}}{{10\left( {\sin \left( \alpha \right)} \right)^{2} x^{3} \left( {N + 2} \right)\left( {N + 1} \right)}}\left\{ {\left( {N + 2} \right)\left( {N\mu _{1} + \mu _{2} } \right)x\left( {l_{0} ^{2} + \frac{{32{\kern 1pt} l_{1} ^{2} }}{9} + \frac{{ - 5l_{2} ^{2} }}{3}} \right)\sin \left( \alpha \right)} \right. \\ & \left. { - \frac{{37{\kern 1pt} h\left( { - \mu _{2} + \mu _{1} } \right)N\cos \left( \alpha \right)}}{6}\left( {l_{0} ^{2} + \frac{{8{\kern 1pt} l_{1} ^{2} }}{{111}} - \frac{{15{\kern 1pt} l_{2} ^{2} }}{{37}}} \right)} \right\},C_{{21}} = {\kern 1pt} \frac{{3h}}{{10\left( {N + 1} \right)x^{2} \left( {\sin \left( \alpha \right)} \right)^{2} \left( {N + 2} \right)}}\left\{ {\left( {N + 2} \right)\left( {N\mu _{1} + \mu _{2} } \right)x} \right. \\ & \left. {\left( {l_{0} ^{2} + \frac{{32{\kern 1pt} l_{1} ^{2} }}{9} + \frac{{ - 5{\kern 1pt} l_{2} ^{2} }}{3}} \right)\sin \left( \alpha \right) + \frac{{11}}{3}{\kern 1pt} \left( { - \mu _{2} + \mu _{1} } \right)h\cos \left( \alpha \right)N\left( {l_{0} ^{2} + \frac{{8{\kern 1pt} l_{1} ^{2} }}{{11}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{11}}} \right)} \right\},C_{{22}} = \frac{{3h}}{{10x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} \left( {N + 2} \right)\left( {N + 1} \right)}} \\ & \left\{ {\left( {N + 2} \right)\left( {N\mu _{1} + \mu _{2} } \right)x\left( {l_{0} ^{2} + \frac{{32{\kern 1pt} l_{1} ^{2} }}{9} - 5/3{\kern 1pt} l_{2} ^{2} } \right)\sin \left( \alpha \right) + 8{\kern 1pt} \cos \left( \alpha \right)\left( { - \mu _{2} + \mu _{1} } \right)N\left( {l_{0} ^{2} + \frac{{l_{1} ^{2} }}{2}} \right)h} \right\}, \\ C_{{23}} = & \frac{{3h}}{{10x\left( {N + 2} \right)\left( {N + 1} \right)\tan \left( \alpha \right)}}\left\{ {\left( {N + 2} \right)\left( {N\mu _{1} + \mu _{2} } \right)x\left( {l_{0} ^{2} + \frac{{32{\kern 1pt} l_{1} ^{2} }}{9} + \frac{{ - 5{\kern 1pt} l_{2} ^{2} }}{3}} \right)\tan \left( \alpha \right) + \frac{{2Nh}}{3}\left( {l_{0} ^{2} - 2{\kern 1pt} l_{1} ^{2} } \right)\left( { - \mu _{2} + \mu _{1} } \right)} \right\}, \\ C_{{24}} = & \frac{{h\left( {N\mu _{1} + \mu _{2} } \right)}}{{x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} \left( {N + 1} \right)}}\left( {\left( {x^{2} - \frac{{129{\kern 1pt} l_{0} ^{2} }}{{10}} - \frac{{208{\kern 1pt} l_{1} ^{2} }}{{15}} + \frac{{ - 5{\kern 1pt} l_{2} ^{2} }}{2}} \right)\left( {\cos \left( \alpha \right)} \right)^{2} - x^{2} + \frac{{18{\kern 1pt} l_{0} ^{2} }}{5} + \frac{{32{\kern 1pt} l_{1} ^{2} }}{{15}} + 2{\kern 1pt} l_{2} ^{2} } \right), \\ C_{{25}} = & \frac{{ - h\left( {N\mu _{1} + \mu _{2} } \right)\left( {27{\kern 1pt} l_{0} ^{2} + 16{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)}}{{15\left( {N + 1} \right)x^{3} \left( {\sin \left( \alpha \right)} \right)^{2} }},C_{{26}} = \frac{{ - 26{\kern 1pt} h\left( {N\mu _{1} + \mu _{2} } \right)}}{{\left( {5{\kern 1pt} N + 5} \right)x^{2} \tan \left( \alpha \right)}}\left( {l_{0} ^{2} + \frac{{4{\kern 1pt} l_{1} ^{2} }}{{13}}} \right), \\ C_{{27}} = & \frac{{h\left( {N\mu _{1} + \mu _{2} } \right)\left( {27{\kern 1pt} l_{0} ^{2} + 16{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)}}{{15\left( {N + 1} \right)x}}, \\ C_{{28}} = & {\kern 1pt} \frac{{h\left( {30{\kern 1pt} \left( {\cos \left( \alpha \right)} \right)^{2} x^{2} - 48{\kern 1pt} \left( {\cos \left( \alpha \right)} \right)^{2} l_{0} ^{2} - 24{\kern 1pt} \left( {\cos \left( \alpha \right)} \right)^{2} l_{1} ^{2} - 30{\kern 1pt} x^{2} - 27{\kern 1pt} l_{0} ^{2} - 16{\kern 1pt} l_{1} ^{2} - 15{\kern 1pt} l_{2} ^{2} } \right)\left( {N\mu _{1} + \mu _{2} } \right)}}{{30\left( {N + 1} \right)x^{2} \left( {\sin \left( \alpha \right)} \right)^{2} }}, \\ C_{{29}} = & \frac{{h\left( {N\mu _{1} + \mu _{2} } \right)\left( {39{\kern 1pt} l_{0} ^{2} + 52{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)\cos \left( \alpha \right)}}{{15\left( {N + 1} \right)x^{3} \left( {\sin \left( \alpha \right)} \right)^{2} }}, \\ \end{aligned}$$
(97)
$$\begin{aligned} D_{1} &= \frac{{ - 15\cos \left( \alpha \right)M0}}{{2x^{3} \left( {\sin \left( \alpha \right)} \right)^{2} }}\left( {l_{0} ^{2} + \frac{{16{\kern 1pt} l_{1} ^{2} }}{{15}} + \frac{{{\kern 1pt} l_{2} ^{2} }}{5}} \right) + {\kern 1pt} \frac{{\left( {\left( { - 70{\kern 1pt} x^{2} + 432{\kern 1pt} l_{0} ^{2} + 176{\kern 1pt} l_{1} ^{2} + 30{\kern 1pt} l_{2} ^{2} } \right)\left( {\cos \left( \alpha \right)} \right)^{2} + 70{\kern 1pt} x^{2} - 351{\kern 1pt} l_{0} ^{2} - 88{\kern 1pt} l_{1} ^{2} - 15{\kern 1pt} l_{2} ^{2} } \right)M2}}{{30x^{4} \left( {\sin \left( \alpha \right)} \right)^{3} }} \\ + \frac{{M3}}{{x^{2} \sin \left( \alpha \right)}},\\ D_{2} &= {\kern 1pt} \frac{{h^{2} \left( { - \mu _{2} + \mu _{1} } \right)N\left( {27{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} + 3{\kern 1pt} l_{2} ^{2} } \right)}}{{6\left( {N + 2} \right)\left( {N + 1} \right)x^{2} \sin \left( \alpha \right)}},\\ D_{3} &= \frac{{3h}}{{5\left( {\sin \left( \alpha \right)} \right)^{3} \left( {N + 1} \right)x^{4} \left( {N + 2} \right)}} \\ & \left( {x\left( {l_{0} ^{2} + \frac{{32{\kern 1pt} l_{1} ^{2} }}{9} + \frac{{ - 5{\kern 1pt} l_{2} ^{2} }}{3}} \right)\left( {N\mu _{1} + \mu _{2} } \right)\left( {N + 2} \right)\sin \left( \alpha \right) + \frac{{45{\kern 1pt} \cos \left( \alpha \right)N\left( { - \mu _{2} + \mu _{1} } \right)h}}{4}\left( {l_{0} ^{2} + \frac{{32{\kern 1pt} l_{1} ^{2} }}{{81}} + \frac{{ - l_{2} ^{2} }}{{27}}} \right)} \right), \\ D_{4} &= \frac{{ - 39{\kern 1pt} h^{3} \left( {N^{3} \mu _{1} + \left( {3{\kern 1pt} \mu _{1} + 3{\kern 1pt} \mu _{2} } \right)N^{2} + \left( {8{\kern 1pt} \mu _{1} + 3{\kern 1pt} \mu _{2} } \right)N + 6{\kern 1pt} \mu _{2} } \right)}}{{\left( {40{\kern 1pt} N + 120} \right)\left( {N + 2} \right)\left( {N + 1} \right)x^{4} \left( {\sin \left( \alpha \right)} \right)^{3} }}\left( {l_{0} ^{2} + \frac{{88{\kern 1pt} l_{1} ^{2} }}{{351}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{117}}} \right), \\ D_{5} &= {\kern 1pt} \frac{{ - 3h}}{{10x\tan \left( \alpha \right)\left( {N + 2} \right)\left( {N + 1} \right)}}\left( {x\left( {l_{0} ^{2} + \frac{{32{\kern 1pt} l_{1} ^{2} }}{9} + \frac{{ - 5{\kern 1pt} l_{2} ^{2} }}{3}} \right)\left( {N\mu _{1} + \mu _{2} } \right)\left( {N + 2} \right)\tan \left( \alpha \right) + 4{\kern 1pt} h\left( { - \mu _{2} + \mu _{1} } \right)\left( {l_{0} ^{2} + \frac{{ - {\kern 1pt} l_{1} ^{2} }}{3}} \right)N} \right), \\ D_{6} &= \frac{{ - 9h^{2} \left( {l_{0} ^{2} + \frac{{2{\kern 1pt} l_{1} ^{2} }}{9}} \right)\left( { - \mu _{2} + \mu _{1} } \right)N}}{{5\left( {N + 2} \right)\left( {N + 1} \right)}},\\D_{7} &= {\kern 1pt} \frac{{3h^{3} \left( {\left( {l_{0} ^{2} + \frac{{2{\kern 1pt} l_{1} ^{2} }}{9}} \right)x + \frac{{l_{1} ^{2} }}{{15}}} \right)\left( {N^{3} \mu _{1} + \left( {3{\kern 1pt} \mu _{1} + 3{\kern 1pt} \mu _{2} } \right)N^{2} + \left( {8{\kern 1pt} \mu _{1} + 3{\kern 1pt} \mu _{2} } \right)N + 6{\kern 1pt} \mu _{2} } \right)}}{{5\left( {N + 3} \right)\left( {N + 2} \right)\left( {N + 1} \right)x^{2} }}, \\ D_{8} & = \frac{{ - 9M1}}{{2x^{4} \left( {\sin \left( \alpha \right)} \right)^{2} }}\left( {\left( {l_{0} ^{2} + \frac{{8{\kern 1pt} l_{1} ^{2} }}{{27}} + \frac{{{\kern 1pt} l_{2} ^{2} }}{9}} \right)x + \frac{{4{\kern 1pt} l_{1} ^{2} }}{{75}}} \right),\\ D_{9}&= \frac{{ - 3h}}{{10x^{2} \tan \left( \alpha \right)\left( {N + 2} \right)\left( {N + 1} \right)}} \\ & \left( {x\left( {l_{0} ^{2} + \frac{{32{\kern 1pt} l_{1} ^{2} }}{9} + \frac{{ - 5l_{2} ^{2} }}{3}} \right)\left( {N\mu _{1} + \mu _{2} } \right)\left( {N + 2} \right)\tan \left( \alpha \right) - 10{\kern 1pt} \left( { - \mu _{2} + \mu _{1} } \right)N\left( {l_{0} ^{2} + \frac{{l_{1} ^{2} }}{3}} \right)h} \right), \\ D_{{10}} &= \frac{{\left( {3{\kern 1pt} N^{3} \mu _{1} + 3{\kern 1pt} \left( {3{\kern 1pt} \mu _{1} + 3{\kern 1pt} \mu _{2} } \right)N^{2} + 3{\kern 1pt} \left( {8{\kern 1pt} \mu _{1} + 3{\kern 1pt} \mu _{2} } \right)N + 18{\kern 1pt} \mu _{2} } \right)h^{3} }}{{\left( {40{\kern 1pt} N + 120} \right)\left( {N + 2} \right)\left( {N + 1} \right)x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} }}\left( {l_{0} ^{2} + \frac{{16{\kern 1pt} l_{1} ^{2} }}{{27}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{9}} \right),\\ D_{{11}} &= \frac{{ - h^{2} \left( { - \mu _{2} + \mu _{1} } \right)N\left( {81{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} - 15{\kern 1pt} l_{2} ^{2} } \right)}}{{60{\kern 1pt} x\sin \left( \alpha \right)\left( {N + 2} \right)\left( {N + 1} \right)}}, \\ \end{aligned}$$
(98)
$$\begin{aligned} D_{{12}} = \frac{{ - 6h}}{{\left( {N + 1} \right)x^{4} \tan \left( \alpha \right)\left( {N + 2} \right)}}\left\{ {\frac{{ - h\tan \left( \alpha \right)N}}{9}\left[ {\left( {\mu _{2} + \frac{{ - 3 k_{1} }}{4} + \frac{{3 k_{2} }}{4} - \mu _{1} } \right)x^{2} - \frac{{\left( {81 \mu _{2} - 81 \mu _{1} } \right)\left( {l_{0} ^{2} + \frac{{2l_{1} ^{2} }}{9}} \right)}}{{10}}} \right]} \right. \hfill \\ & \left. { + x\left( {N\mu _{1} + \mu _{2} } \right)\left( {N + 2} \right)\left( {l_{0} ^{2} + \frac{{2l_{1} ^{2} }}{3}} \right)} \right\},D_{{13}} = \frac{{ - 6h}}{{x^{4} \left( {\tan \left( \alpha \right)} \right)^{2} \left( {N + 2} \right)\left( {N + 1} \right)}}\left\{ {\frac{{ - h\tan \left( \alpha \right)N}}{9}} \right. \hfill \\ \left. {\left[ {\left( {\mu _{2} + \frac{{ - 3k_{1} }}{4} + \frac{{3 k_{2} }}{4} - \mu _{1} } \right)x^{2} - \frac{{\left( {81 \mu _{2} - 81 \mu _{1} } \right)\left( {l_{0} ^{2} + \frac{{2l_{1} ^{2} }}{9}} \right)}}{{10}}} \right] + x\left( {N\mu _{1} + \mu _{2} } \right)\left( {N + 2} \right)\left( {l_{0} ^{2} + \frac{{2l_{1} ^{2} }}{3}} \right)} \right\},D_{{14}} = \hfill \\ & \frac{{M0 \left( {63l_{0} ^{2} + 104l_{1} ^{2} + 75l_{2} ^{2} } \right)}}{{30x^{2} \sin \left( \alpha \right)}} + \frac{{ - \left( {\left( {70x^{2} - 351l_{0} ^{2} - 112 l_{1} ^{2} - 15l_{2} ^{2} } \right)\left( {\cos \left( \alpha \right)} \right)^{2} - 70x^{2} + 351l_{0} ^{2} + 88l_{1} ^{2} + 15 l_{2} ^{2} } \right)M1}}{{30x^{4} \left( {\sin \left( \alpha \right)} \right)^{3} }} \hfill \\ + \frac{{M4}}{{x^{2} \sin \left( \alpha \right)}} + \frac{{ - \left( {27l_{0} ^{2} + 32l_{1} ^{2} + 9l_{2} ^{2} } \right)M2\cos \left( \alpha \right)}}{{6x^{3} \left( {\sin \left( \alpha \right)} \right)^{2} }}, \hfill \\ D_{{15}} &= \frac{{ - M0 \left( {30 \left( {\cos \left( \alpha \right)} \right)^{2} x^{2} + 36 \left( {\cos \left( \alpha \right)} \right)^{2} l_{0} ^{2} + 48 \left( {\cos \left( \alpha \right)} \right)^{2} l_{1} ^{2} - 30x^{2} - 63l_{0} ^{2} - 64l_{1} ^{2} - 15l_{2} ^{2} } \right)}}{{30x^{2} \left( {\sin \left( \alpha \right)} \right)^{2} }} \hfill \\ & + \frac{{\left( {100x^{2} - 810l_{0} ^{2} - 198 l_{1} ^{2} } \right)M1}}{{75 x^{4} }} + \frac{{ - 6\left( {l_{0} ^{2} + 4/3 l_{1} ^{2} } \right)M2}}{{5x^{3} \tan \left( \alpha \right)}} + \frac{{M4}}{{x^{2} }},D_{{16}} = \frac{{ - h^{2} \left( { - \mu _{2} + \mu _{1} } \right)N\left( {27 l_{0} ^{2} + 8l_{1} ^{2} + 3 l_{2} ^{2} } \right)}}{{12x^{2} \left( {\sin \left( \alpha \right)} \right)^{2} \left( {N + 2} \right)\left( {N + 1} \right)}}, \hfill \\ D_{{17}} & = \frac{{M0}}{{30x^{3} \left( {\tan \left( \alpha \right)} \right)^{2} }}\left( {30 x\left( {x^{2} + \frac{{3l_{0} ^{2} }}{{10}} + \frac{{16 l_{1} ^{2} }}{{15}} + \frac{{ - l_{2} ^{2} }}{2}} \right)\left( {\tan \left( \alpha \right)} \right)^{2} + 81 x\left( {l_{0} ^{2} + \frac{{8 l_{1} ^{2} }}{{81}} - \frac{{5 l_{2} ^{2} }}{{27}}} \right)} \right) \hfill \\ & + \frac{{\left( {20x^{2} + 324l_{0} ^{2} + 72 l_{1} ^{2} } \right)M2}}{{30x^{3} \tan \left( \alpha \right)}} - \frac{{M3}}{{x\tan \left( \alpha \right)}},D_{{18}} = \frac{{\left( {18l_{0} ^{2} + 4l_{1} ^{2} } \right)M0}}{{5 x^{2} \tan \left( \alpha \right)}} + \frac{{\left( { - 20x^{2} + 162l_{0} ^{2} + 36 l_{1} ^{2} } \right)M2}}{{15x^{3} }} - \frac{{M3}}{x}, \hfill \\ D_{{19}} & = \frac{{ - h^{2} \left( { - \mu _{2} + \mu _{1} } \right)N\left( {81l_{0} ^{2} + 8l_{1} ^{2} - 15 l_{2} ^{2} } \right)}}{{60 x^{3} \left( {\sin \left( \alpha \right)} \right)^{3} \left( {N + 2} \right)\left( {N + 1} \right)}},D_{{20}} = \frac{{\left( {9N^{3} \mu _{1} + 9\left( {3 \mu _{1} + 3 \mu _{2} } \right)N^{2} + 9 \left( {8 \mu _{1} + 3 \mu _{2} } \right)N + 54 \mu _{2} } \right)h^{3} }}{{\left( {40 N + 120} \right)\left( {N + 2} \right)\left( {N + 1} \right)x^{3} \left( {\sin \left( \alpha \right)} \right)^{3} }} \hfill \\ & \left( {l_{0} ^{2} + \frac{{8 l_{1} ^{2} }}{{81}} - \frac{{5 l_{2} ^{2} }}{{27}}} \right),D_{{21}} = \frac{{ - 3h^{3} \left( {N^{3} \mu _{1} + \left( {3 \mu _{1} + 3 \mu _{2} } \right)N^{2} + \left( {8 \mu _{1} + 3 \mu _{2} } \right)N + 6 \mu _{2} } \right)}}{{4\left( {N + 3} \right)\left( {N + 2} \right)\left( {N + 1} \right)x^{2} \sin \left( \alpha \right)}}\left( {l_{0} ^{2} + \frac{{8 l_{1} ^{2} }}{{27}} + \frac{{ l_{2} ^{2} }}{9}} \right), \hfill \\ D_{{22}}& = \frac{{ - h^{2} \left( { - \mu _{2} + \mu _{1} } \right)N\left( {27l_{0} ^{2} + 16l_{1} ^{2} + 15 l_{2} ^{2} } \right)}}{{60 x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} \left( {N + 2} \right)\left( {N + 1} \right)}}, \hfill \\ \end{aligned}$$
(99)
$$\begin{aligned} D_{{23}} &= \frac{{6h}}{{5x^{2} \tan \left( \alpha \right)\left( {N + 2} \right)\left( {N + 1} \right)}}\{ \frac{{ - 5hN\tan \left( \alpha \right)}}{9}[\left( {\mu _{2} + \frac{{ - 3{\kern 1pt} k_{1} }}{4} + \frac{{3{\kern 1pt} k_{2} }}{4} - \mu _{1} } \right)x^{2} + \frac{{\left( {81{\kern 1pt} \mu _{2} - 81{\kern 1pt} \mu _{1} } \right)\left( {l_{0} ^{2} + \frac{{2l_{1} ^{2} }}{9}} \right)}}{{10}}] \\ &\quad + \left( {l_{0} ^{2} + \frac{{ - l_{1} ^{2} }}{3}} \right)\left( {N\mu _{1} + \mu _{2} } \right)x\left( {N + 2} \right)\} , \\ D_{{24}} &= \frac{{h^{2} \left( { - \mu _{2} + \mu _{1} } \right)N\left( {27{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} + 3{\kern 1pt} l_{2} ^{2} } \right)}}{{12x^{3} \left( {\sin \left( \alpha \right)} \right)^{2} \left( {N + 2} \right)\left( {N + 1} \right)}},D_{{25}} = \frac{{ - 3h}}{{10x^{3} \left( {\sin \left( \alpha \right)} \right)^{3} \left( {N + 2} \right)\left( {N + 1} \right)}} \\ & \left( {x\left( {l_{0} ^{2} + \frac{{32{\kern 1pt} l_{1} ^{2} }}{9} + \frac{{ - 5{\kern 1pt} l_{2} ^{2} }}{3}} \right)\left( {N\mu _{1} + \mu _{2} } \right)\left( {N + 2} \right)\sin \left( \alpha \right) + 5{\kern 1pt} h\left( {l_{0} ^{2} + \frac{{ - {\kern 1pt} l_{2} ^{2} }}{3}} \right)\left( { - \mu _{2} + \mu _{1} } \right)\cos \left( \alpha \right)N} \right), \\ D_{{26}} &= \frac{{Nh^{2} \left( { - \mu _{2} + \mu _{1} } \right)\left( {351{\kern 1pt} l_{0} ^{2} + 88{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)}}{{60{\kern 1pt} \left( {\sin \left( \alpha \right)} \right)^{3} \left( {N + 1} \right)x^{4} \left( {N + 2} \right)}}, \\ D_{{27}} = & \frac{{\left( { - 315{\kern 1pt} l_{0} ^{2} - 320{\kern 1pt} l_{1} ^{2} - 75{\kern 1pt} l_{2} ^{2} } \right)M0}}{{150{\kern 1pt} x}} + \frac{{\left( { - 200{\kern 1pt} x^{3} + \left( {1620{\kern 1pt} l_{0} ^{2} + 396{\kern 1pt} l_{1} ^{2} } \right)x + 36{\kern 1pt} l_{1} ^{2} } \right)M1}}{{150{\kern 1pt} x^{4} }} - \frac{{M4}}{x}, \\ D_{{28}} = & {\kern 1pt} \frac{{ - 2M0{\kern 1pt} \left( {2{\kern 1pt} l_{1} ^{2} + 3{\kern 1pt} l_{2} ^{2} } \right)}}{{3x^{2} \sin ^{2} \left( \alpha \right)}} + \frac{{M1}}{{x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} }}\left( {\left( {x^{2} + \frac{{99{\kern 1pt} l_{0} ^{2} }}{{10}} + \frac{{122{\kern 1pt} l_{1} ^{2} }}{{75}} + \frac{{ - 3{\kern 1pt} l_{2} ^{2} }}{2}} \right)\left( {\cos \left( \alpha \right)} \right)^{2} - x^{2} - \frac{{99{\kern 1pt} l_{0} ^{2} }}{{10}} - \frac{{122{\kern 1pt} l_{1} ^{2} }}{{75}} + \frac{{l_{2} ^{2} }}{2}} \right) \\ & + {\kern 1pt} \frac{{M2{\kern 1pt} \left( {27{\kern 1pt} l_{0} ^{2} + 16{\kern 1pt} l_{1} ^{2} + 45{\kern 1pt} l_{2} ^{2} } \right)\cos \left( \alpha \right)}}{{15x^{3} \left( {\sin \left( \alpha \right)} \right)^{3} }},D_{{29}} = \frac{{3\left( {N^{3} \mu _{1} + \left( {3{\kern 1pt} \mu _{1} + 3{\kern 1pt} \mu _{2} } \right)N^{2} + \left( {8{\kern 1pt} \mu _{1} + 3{\kern 1pt} \mu _{2} } \right)N + 6{\kern 1pt} \mu _{2} } \right)h^{3} }}{{8\left( {N + 1} \right)\left( {N + 2} \right)\left( {N + 3} \right)x^{2} \left( {\sin \left( \alpha \right)} \right)^{2} }}\left( {l_{0} ^{2} + \frac{{8{\kern 1pt} l_{1} ^{2} }}{{27}} + \frac{{l_{2} ^{2} }}{9}} \right), \\ \end{aligned}$$
(100)
$$\begin{aligned} D_{{30}} = & \frac{{ - M0{\kern 1pt} \left( {21{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} - 15{\kern 1pt} l_{2} ^{2} } \right)}}{{10x\sin \left( \alpha \right)}} + {\kern 1pt} \frac{{ - \left( {\left( { - 10{\kern 1pt} x^{2} + 351{\kern 1pt} l_{0} ^{2} + 64{\kern 1pt} l_{1} ^{2} - 15{\kern 1pt} l_{2} ^{2} } \right)\left( {\cos \left( \alpha \right)} \right)^{2} + 10{\kern 1pt} x^{2} - 351{\kern 1pt} l_{0} ^{2} - 88{\kern 1pt} l_{1} ^{2} - 15{\kern 1pt} l_{2} ^{2} } \right)M1}}{{30x^{3} \left( {\sin \left( \alpha \right)} \right)^{3} }} \\ & + \frac{{\left( {3{\kern 1pt} l_{0} ^{2} + 4{\kern 1pt} l_{1} ^{2} - 5{\kern 1pt} l_{2} ^{2} } \right)M2{\kern 1pt} \cos \left( \alpha \right)}}{{5x^{2} \left( {\sin \left( \alpha \right)} \right)^{2} }} - \frac{{M4}}{{x\sin \left( \alpha \right)}}, \\ D_{{31}} = & \frac{{9{\kern 1pt} \left( {N^{3} \mu _{1} + \left( {3{\kern 1pt} \mu _{1} + 3{\kern 1pt} \mu _{2} } \right)N^{2} + \left( {8{\kern 1pt} \mu _{1} + 3{\kern 1pt} \mu _{2} } \right)N + 6{\kern 1pt} \mu _{2} } \right)h^{3} }}{{\left( {40{\kern 1pt} N + 120} \right)\left( {N + 2} \right)\left( {N + 1} \right)x\sin \left( \alpha \right)}}\left( {l_{0} ^{2} + \frac{{8{\kern 1pt} l_{1} ^{2} }}{{81}} - \frac{{5{\kern 1pt} l_{2} ^{2} }}{{27}}} \right),D_{{32}} = \frac{{ - 18{\kern 1pt} h^{2} \left( {l_{0} ^{2} + \frac{{2{\kern 1pt} l_{1} ^{2} }}{9}} \right)\left( { - \mu _{2} + \mu _{1} } \right)N}}{{5{\kern 1pt} x\left( {N + 2} \right)\left( {N + 1} \right)}}, \\ D_{{33}} = & \left( { - \frac{{21{\kern 1pt} l_{0} ^{2} }}{{10}} - \frac{{32{\kern 1pt} l_{1} ^{2} }}{{15}} + \frac{{ - {\kern 1pt} l_{2} ^{2} }}{2}} \right)M0 + \frac{{\left( { - 200{\kern 1pt} x^{3} + \left( { - 1620{\kern 1pt} l_{0} ^{2} - 432{\kern 1pt} l_{1} ^{2} } \right)x - 36{\kern 1pt} l_{1} ^{2} } \right)M1}}{{150{\kern 1pt} x^{3} }} + {\kern 1pt} \frac{{6\left( {l_{0} ^{2} + \frac{{ - {\kern 1pt} l_{1} ^{2} }}{3}} \right)M2}}{{x\tan \left( \alpha \right)}} - M4, \\ D_{{34}} = & \frac{{3\left( {N^{3} \mu _{1} + \left( {3{\kern 1pt} \mu _{1} + 3{\kern 1pt} \mu _{2} } \right)N^{2} + \left( {8{\kern 1pt} \mu _{1} + 3{\kern 1pt} \mu _{2} } \right)N + 6{\kern 1pt} \mu _{2} } \right)\left( {l_{0} ^{2} + 2/9{\kern 1pt} l_{1} ^{2} } \right)h^{3} }}{{10\left( {N + 1} \right)\left( {N + 2} \right)\left( {N + 3} \right)}},D_{{35}} = \frac{{3\left( {l_{0} ^{2} + \frac{{4{\kern 1pt} l_{1} ^{2} }}{9} + \frac{{ - {\kern 1pt} l_{2} ^{2} }}{3}} \right)\cos \left( \alpha \right)M0}}{{x^{2} \left( {\sin \left( \alpha \right)} \right)^{2} }} \\ & + {\kern 1pt} \frac{{\left( {\left( {10{\kern 1pt} x^{2} - 360{\kern 1pt} l_{0} ^{2} - 80{\kern 1pt} l_{1} ^{2} } \right)\left( {\cos \left( \alpha \right)} \right)^{2} - 10{\kern 1pt} x^{2} + 351{\kern 1pt} l_{0} ^{2} + 88{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)M2}}{{30x^{3} \left( {\sin \left( \alpha \right)} \right)^{3} }} - \frac{{M3}}{{x\sin \left( \alpha \right)}},D_{{36}} = \frac{{9{\kern 1pt} \cos \left( \alpha \right)M0}}{{10{\kern 1pt} x^{3} \left( {\sin \left( \alpha \right)} \right)^{3} }} \\ & \left( {l_{0} ^{2} + \frac{{56{\kern 1pt} l_{1} ^{2} }}{{27}} + \frac{{25{\kern 1pt} l_{2} ^{2} }}{9}} \right) + \frac{{M2}}{{30x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} }}\left( {30{\kern 1pt} \left( {x^{2} + \frac{{99{\kern 1pt} l_{0} ^{2} }}{{10}} + \frac{{28{\kern 1pt} l_{1} ^{2} }}{{15}} + \frac{{ - 3l_{2} ^{2} }}{2}} \right)\left( {\cos \left( \alpha \right)} \right)^{2} - 30{\kern 1pt} x^{2} - 297{\kern 1pt} l_{0} ^{2} - 56{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right), \\ I_{2} = & \frac{1}{{12}}{\kern 1pt} \rho _{1} h^{3} + \frac{{h^{3} \left( {N^{2} + N + 2} \right)\left( {\rho _{2} - \rho _{1} } \right)}}{{4{\kern 1pt} N^{3} + 24{\kern 1pt} N^{2} + 44{\kern 1pt} N + 24}}, \\ \end{aligned}$$
(101)
$$\begin{gathered} M0 = {\mu_1}h + \frac{{h\left( {{\mu_2} - {\mu_1}} \right)}}{N + 1},M1 = \frac{1}{12}{\kern 1pt} {\mu_1}{h^3} + {\kern 1pt} \frac{{{h^3}\left( {{N^2} + N + 2} \right)\left( {{\mu_2} - {\mu_1}} \right)}}{{4\left( {N + 3} \right)\left( {N + 2} \right)\left( {N + 1} \right)}},M2 = \frac{{{h^2}N\left( {{\mu_2} - {\mu_1}} \right)}}{{2\left( {N + 2} \right)\left( {N + 1} \right)}}, \hfill \\ M3 = {\kern 1pt} \frac{{{h^2}\left( {{k_2} - {k_1}} \right)N}}{{2\left( {N + 2} \right)\left( {N + 1} \right)}},M4 = \frac{1}{12}{\kern 1pt} {k_1}{h^3} + \frac{{{h^3}\left( {{N^2} + N + 2} \right)\left( {{k_2} - {k_1}} \right)}}{{4\left( {N + 3} \right)\left( {N + 2} \right)\left( {N + 1} \right)}},K0 = {k_1}h + \frac{{h\left( {{k_2} - {k_1}} \right)}}{N + 1}. \hfill \\ \end{gathered}$$
(102)
$$\begin{aligned} E_{1} = & \frac{{M1{\kern 1pt} \left( {27{\kern 1pt} l_{0} ^{2} + 16{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)}}{{15x}},E_{2} = \frac{{M1{\kern 1pt} \left( {27{\kern 1pt} l_{0} ^{2} + 16{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)}}{{30}},E_{3} = {\kern 1pt} \frac{{M1{\kern 1pt} \left( {27{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} + 3{\kern 1pt} l_{2} ^{2} } \right)}}{{6x^{2} \left( {\sin \left( \alpha \right)} \right)^{2} }}, \\ E_{4} = & \frac{{2M1{\kern 1pt} \left( {9{\kern 1pt} l_{0} ^{2} + 2{\kern 1pt} l_{1} ^{2} } \right)}}{{5x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} }},E_{5} = \frac{{{\kern 1pt} M2{\kern 1pt} \left( {27{\kern 1pt} l_{0} ^{2} + 16{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)}}{{30}},E_{6} = \frac{{M2{\kern 1pt} \left( {27{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} + 3{\kern 1pt} l_{2} ^{2} } \right)}}{{6x^{2} \left( {\sin \left( \alpha \right)} \right)^{2} }}, \\ E_{7} = & \frac{{2M2{\kern 1pt} \left( {9{\kern 1pt} l_{0} ^{2} + 2{\kern 1pt} l_{1} ^{2} } \right)}}{{5x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} }},E_{8} = {\kern 1pt} \frac{1}{{30x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} }}\left( { - 9{\kern 1pt} M0{\kern 1pt} x\left( {l_{0} ^{2} + \frac{{32{\kern 1pt} l_{1} ^{2} }}{9} + \frac{{ - 5{\kern 1pt} l_{2} ^{2} }}{3}} \right)\sin \left( \alpha \right) + 144{\kern 1pt} \left( {l_{0} ^{2} + \frac{{{\kern 1pt} l_{1} ^{2} }}{2}} \right)M2{\kern 1pt} \cos \left( \alpha \right)} \right), \\ E_{9} = & \frac{{M2{\kern 1pt} \left( {27{\kern 1pt} l_{0} ^{2} + 16{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)}}{{15x}}, \\ E_{{10}} = & \frac{{M0}}{{x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} }}\left( {\sin \left( \alpha \right)\left( {x^{2} + \frac{{ - 8l_{1} ^{2} }}{3} + 2{\kern 1pt} l_{2} ^{2} } \right)x\left( {\cos \left( \alpha \right)} \right)^{3} - \sin \left( \alpha \right)\left( {x^{2} + \frac{{9{\kern 1pt} l_{0} ^{2} }}{{10}} + \frac{{28{\kern 1pt} l_{1} ^{2} }}{{15}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{2}} \right)x\cos \left( \alpha \right)} \right), \\ & + \frac{{M2}}{{x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} }}\left( {\left( {x^{2} - 4{\kern 1pt} l_{2} ^{2} } \right)\left( {\cos \left( \alpha \right)} \right)^{4} - 2{\kern 1pt} \left( {x^{2} - \frac{{27{\kern 1pt} l_{0} ^{2} }}{{20}} + \frac{{ - 8{\kern 1pt} l_{1} ^{2} }}{5} + \frac{{ - 11{\kern 1pt} l_{2} ^{2} }}{4}} \right)\left( {\cos \left( \alpha \right)} \right)^{2} + x^{2} - \frac{{27{\kern 1pt} l_{0} ^{2} }}{{10}} + \frac{{ - 8{\kern 1pt} l_{1} ^{2} }}{5} + \frac{{ - 3{\kern 1pt} l_{2} ^{2} }}{2}} \right), \\ E_{{11}} &= \frac{{ - \left( {\left( { - 63{\kern 1pt} l_{0} ^{2} - 104{\kern 1pt} l_{1} ^{2} - 75{\kern 1pt} l_{2} ^{2} } \right)x^{2} \left( {\cos \left( \alpha \right)} \right)^{2} + \left( {63{\kern 1pt} l_{0} ^{2} + 104{\kern 1pt} l_{1} ^{2} + 75{\kern 1pt} l_{2} ^{2} } \right)x^{2} } \right)M0}}{{30x^{4} \sin ^{3} \left( \alpha \right)}} \\ & + \frac{{39{\kern 1pt} \cos \left( \alpha \right)M2}}{{10{\kern 1pt} x^{3} \sin ^{2} \left( \alpha \right)}}\left( {l_{0} ^{2} + \frac{{136{\kern 1pt} l_{1} ^{2} }}{{117}} + \frac{{25{\kern 1pt} l_{2} ^{2} }}{{39}}} \right) + {\kern 1pt} \frac{{ - 1}}{{30x^{4} \sin ^{3} \left( \alpha \right)}}\left[\left( {\left( { - 70{\kern 1pt} M1 - 30{\kern 1pt} M4} \right)x^{2} + 189{\kern 1pt} \left( {l_{0} ^{2} + \frac{{16{\kern 1pt} l_{1} ^{2} }}{{21}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{9}} \right)M1} \right)\right. \\ & \left. \left( {\cos \left( \alpha \right)} \right)^{2} + \left( {70{\kern 1pt} M1 + 30{\kern 1pt} M4} \right)x^{2} - 189{\kern 1pt} \left( {l_{0} ^{2} + \frac{{8{\kern 1pt} l_{1} ^{2} }}{{21}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{21}}} \right)M1\right],E_{{12}} = \frac{{ - M1{\kern 1pt} \left( {27{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} + 3{\kern 1pt} l_{2} ^{2} } \right)}}{{6x^{3} \left( {\sin \left( \alpha \right)} \right)^{2} }}, \\ E_{{13}} = & \frac{{M1{\kern 1pt} \left( {81{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} - 15{\kern 1pt} l_{2} ^{2} } \right)}}{{30x^{3} \left( {\sin \left( \alpha \right)} \right)^{3} }}, \\ \end{aligned}$$
(103)
$$\begin{aligned} E_{{14}} = & \frac{{ - \left( {63{\kern 1pt} l_{0} ^{2} + 64{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)M0}}{{30x^{2} \left( {\sin \left( \alpha \right)} \right)^{2} }} + \frac{{\left( {\left( {40{\kern 1pt} x^{2} - 27{\kern 1pt} l_{0} ^{2} - 24{\kern 1pt} l_{1} ^{2} + 45{\kern 1pt} l_{2} ^{2} } \right)\left( {\cos \left( \alpha \right)} \right)^{2} - 40{\kern 1pt} x^{2} + 27{\kern 1pt} l_{0} ^{2} - 24{\kern 1pt} l_{1} ^{2} - 45{\kern 1pt} l_{2} ^{2} } \right)M1}}{{30x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} }} \\ & + \frac{{\left( {12{\kern 1pt} l_{0} ^{2} + 16{\kern 1pt} l_{1} ^{2} } \right)\cos \left( \alpha \right)M2}}{{5{\kern 1pt} x^{3} \left( {\sin \left( \alpha \right)} \right)^{3} }} - \frac{{M4}}{{x^{2} \left( {\sin \left( \alpha \right)} \right)^{2} }},E_{{15}} = {\kern 1pt} \frac{{ - \left( {4{\kern 1pt} l_{1} ^{2} + 6{\kern 1pt} l_{2} ^{2} } \right)}}{3}M0 + \frac{{9\cos \left( \alpha \right)M2}}{{5x\sin \left( \alpha \right)}}\left( {l_{0} ^{2} + \frac{{ - 4{\kern 1pt} l_{1} ^{2} }}{{27}} + \frac{{ - 5{\kern 1pt} l_{2} ^{2} }}{9}} \right) \\ & + \frac{{ - \left( {\left( { - 30{\kern 1pt} x^{2} - 81{\kern 1pt} l_{0} ^{2} - 72{\kern 1pt} l_{1} ^{2} - 15{\kern 1pt} l_{2} ^{2} } \right)\left( {\cos \left( \alpha \right)} \right)^{2} + 30{\kern 1pt} x^{2} + 81{\kern 1pt} l_{0} ^{2} + 48{\kern 1pt} l_{1} ^{2} + 45{\kern 1pt} l_{2} ^{2} } \right)M1}}{{30x^{2} \left( {\sin \left( \alpha \right)} \right)^{2} }},E_{{16}} = {\kern 1pt} \frac{{3M2{\kern 1pt} \left( {21{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} + 5{\kern 1pt} l_{2} ^{2} } \right)}}{{10x^{4} \left( {\sin \left( \alpha \right)} \right)^{3} }}, \\ E_{{17}} = & \frac{{\left( { - 21{\kern 1pt} l_{0} ^{2} - 8{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)M0}}{{10x\sin \left( \alpha \right)}} + \frac{{\left( {\left( { - 50{\kern 1pt} x^{2} - 945{\kern 1pt} l_{0} ^{2} - 408{\kern 1pt} l_{1} ^{2} - 375{\kern 1pt} l_{2} ^{2} } \right)\left( {\cos \left( \alpha \right)} \right)^{2} + 50{\kern 1pt} x^{2} + 945{\kern 1pt} l_{0} ^{2} + 288{\kern 1pt} l_{1} ^{2} + 225{\kern 1pt} l_{2} ^{2} } \right)M1}}{{150{\kern 1pt} x^{3} \left( {\left( {\cos \left( \alpha \right)} \right)^{2} - 1} \right)\sin \left( \alpha \right)}} \\ & + \frac{{\left( {3{\kern 1pt} l_{0} ^{2} + 4{\kern 1pt} l_{1} ^{2} - 5{\kern 1pt} l_{2} ^{2} } \right)M2{\kern 1pt} \cos \left( \alpha \right)}}{{5x^{2} \left( {\sin \left( \alpha \right)} \right)^{2} }} - \frac{{M4}}{{x\sin \left( \alpha \right)}},E_{{18}} = \frac{{\left( {117{\kern 1pt} l_{0} ^{2} + 176{\kern 1pt} l_{1} ^{2} - 15{\kern 1pt} l_{2} ^{2} } \right)\cos \left( \alpha \right)M0}}{{30x^{3} \left( {\sin \left( \alpha \right)} \right)^{3} }} + \frac{{M3}}{{x^{2} \left( {\left( {\cos \left( \alpha \right)} \right)^{2} - 1} \right)}} \\ & + \frac{{\left( {\left( {40{\kern 1pt} x^{2} - 63{\kern 1pt} l_{0} ^{2} - 48{\kern 1pt} l_{1} ^{2} + 45{\kern 1pt} l_{2} ^{2} } \right)\left( {\cos \left( \alpha \right)} \right)^{2} - 40{\kern 1pt} x^{2} + 27{\kern 1pt} l_{0} ^{2} - 24{\kern 1pt} l_{1} ^{2} - 45{\kern 1pt} l_{2} ^{2} } \right)M2}}{{30x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} }}, \\ E_{{19}} = & \frac{{3M1{\kern 1pt} \left( {21{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} + 5{\kern 1pt} l_{2} ^{2} } \right)}}{{10x^{4} \left( {\sin \left( \alpha \right)} \right)^{3} }},E_{{20}} = \frac{{M1{\kern 1pt} \left( {675{\kern 1pt} xl_{0} ^{2} + 200{\kern 1pt} xl_{1} ^{2} + 75{\kern 1pt} xl_{2} ^{2} - 36{\kern 1pt} l_{1} ^{2} } \right)}}{{75{\kern 1pt} x^{3} \sin \left( \alpha \right)}}, \\ E_{{21}} = & {\kern 1pt} \frac{{ - 1}}{{30\left( {\sin \left( \alpha \right)} \right)^{2} x^{2} }}\left( { - 126{\kern 1pt} \left( {l_{0} ^{2} + \frac{{8{\kern 1pt} l_{1} ^{2} }}{{21}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{21}}} \right)M2{\kern 1pt} \cos \left( \alpha \right) + 9{\kern 1pt} \left( {l_{0} ^{2} + \frac{{32{\kern 1pt} l_{1} ^{2} }}{9} - 5/3{\kern 1pt} l_{2} ^{2} } \right)x\sin \left( \alpha \right)M0} \right), \\ E_{{22}} = & \frac{1}{{30\left( {\sin \left( \alpha \right)} \right)^{2} x^{3} }}\left( { - 9{\kern 1pt} \left( {l_{0} ^{2} + \frac{{32{\kern 1pt} l_{1} ^{2} }}{9} - 5/3{\kern 1pt} l_{2} ^{2} } \right)x\sin \left( \alpha \right)M0 - 243{\kern 1pt} \cos \left( \alpha \right)M2{\kern 1pt} \left( {l_{0} ^{2} + \frac{{104{\kern 1pt} l_{1} ^{2} }}{{243}} + \frac{{5{\kern 1pt} l_{2} ^{2} }}{{81}}} \right)} \right), \\ \end{aligned}$$
(104)
$$\begin{aligned} E_{{23}} = & \frac{{\left( {9{\kern 1pt} l_{0} ^{2} + 12{\kern 1pt} l_{1} ^{2} - 15{\kern 1pt} l_{2} ^{2} } \right)\cos \left( \alpha \right)M0}}{{10{\kern 1pt} \sin \left( \alpha \right)x}} + \frac{{M2}}{{30\left( {\sin \left( \alpha \right)} \right)^{2} x^{2} }} \\ & \left( {30{\kern 1pt} \left( {x^{2} + 9/5{\kern 1pt} l_{0} ^{2} + \frac{{32{\kern 1pt} l_{1} ^{2} }}{{15}} + l_{2} ^{2} } \right)\left( {\cos \left( \alpha \right)} \right)^{2} - 30{\kern 1pt} x^{2} - 81{\kern 1pt} l_{0} ^{2} - 48{\kern 1pt} l_{1} ^{2} - 45{\kern 1pt} l_{2} ^{2} } \right),E_{{24}} = \frac{{M2{\kern 1pt} \left( {27{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} + 3{\kern 1pt} l_{2} ^{2} } \right)}}{{3x^{2} \sin \left( \alpha \right)}}, \\ E_{{25{\kern 1pt} }} = & \frac{{ - M2{\kern 1pt} \left( {27{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} + 3{\kern 1pt} l_{2} ^{2} } \right)}}{{6\left( {\sin \left( \alpha \right)} \right)^{2} x^{3} }},E_{{26}} = \frac{{M1{\kern 1pt} \left( {81{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} - 15{\kern 1pt} l_{2} ^{2} } \right)}}{{30\sin \left( \alpha \right)x}},E_{{27}} = \frac{{3\cos \left( \alpha \right)M0}}{{10\left( {\sin \left( \alpha \right)} \right)^{2} x^{2} }}\left( {l_{0} ^{2} + \frac{{32{\kern 1pt} l_{1} ^{2} }}{9} - 5/3{\kern 1pt} l_{2} ^{2} } \right) \\ & + \frac{{ - \left( {\left( { - 10{\kern 1pt} x^{2} - 189{\kern 1pt} l_{0} ^{2} - 96{\kern 1pt} l_{1} ^{2} - 75{\kern 1pt} l_{2} ^{2} } \right)\left( {\cos \left( \alpha \right)} \right)^{2} + 10{\kern 1pt} x^{2} + 189{\kern 1pt} l_{0} ^{2} + 72{\kern 1pt} l_{1} ^{2} + 45{\kern 1pt} l_{2} ^{2} } \right)M2}}{{30x^{3} \left( {\sin \left( \alpha \right)} \right)^{3} }} - \frac{{M3}}{{\sin \left( \alpha \right)x}}, \\ E_{{28{\kern 1pt} }} = & \frac{{\left( { - 4{\kern 1pt} l_{1} ^{2} - 6{\kern 1pt} l_{2} ^{2} } \right)M0}}{{3x}} + \frac{{ - \left( {\left( { - 30{\kern 1pt} x^{2} + 81{\kern 1pt} l_{0} ^{2} + 72{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)\left( {\cos \left( \alpha \right)} \right)^{2} + 30{\kern 1pt} x^{2} - 81{\kern 1pt} l_{0} ^{2} - 48{\kern 1pt} l_{1} ^{2} - 45{\kern 1pt} l_{2} ^{2} } \right)M1}}{{30\left( {\sin \left( \alpha \right)} \right)^{2} x^{3} }}, \\ E_{{29}} = & \frac{{9{\kern 1pt} \cos \left( \alpha \right)M0}}{{10{\kern 1pt} x^{2} \sin \left( \alpha \right)}}\left( {l_{0} ^{2} + \frac{{16{\kern 1pt} l_{1} ^{2} }}{{27}} + 5/9{\kern 1pt} l_{2} ^{2} } \right) + {\kern 1pt} \frac{{\left( {30{\kern 1pt} \left( {x^{2} - 8/5{\kern 1pt} l_{1} ^{2} - 3{\kern 1pt} l_{2} ^{2} } \right)\left( {\cos \left( \alpha \right)} \right)^{2} - 30{\kern 1pt} x^{2} + 81{\kern 1pt} l_{0} ^{2} + 48{\kern 1pt} l_{1} ^{2} + 45{\kern 1pt} l_{2} ^{2} } \right)M2}}{{30\left( {\sin \left( \alpha \right)} \right)^{2} x^{3} }}, \\ E_{{30}} = & \frac{{ - M0}}{{x^{3} \left( {\sin \left( \alpha \right)} \right)^{3} }}\left( {\left( {x^{2} - 9/2{\kern 1pt} l_{0} ^{2} - \frac{{28{\kern 1pt} l_{1} ^{2} }}{3} - 1/2{\kern 1pt} l_{2} ^{2} } \right)\left( {\cos \left( \alpha \right)} \right)^{2} - x^{2} } \right) - \frac{{M3{\kern 1pt} \cos \left( \alpha \right)}}{{\left( {\sin \left( \alpha \right)} \right)^{2} x^{2} }} \\ & + {\kern 1pt} \frac{{\left( {\left( {40{\kern 1pt} x^{2} - 189{\kern 1pt} l_{0} ^{2} - 144{\kern 1pt} l_{1} ^{2} + 15{\kern 1pt} l_{2} ^{2} } \right)\left( {\cos \left( \alpha \right)} \right)^{3} + \left( { - 40{\kern 1pt} x^{2} + 189{\kern 1pt} l_{0} ^{2} + 72{\kern 1pt} l_{1} ^{2} - 15{\kern 1pt} l_{2} ^{2} } \right)\cos \left( \alpha \right)} \right)M2}}{{30x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} }}, \\ E_{{31}} = & \frac{{9\cos \left( \alpha \right)M0}}{{2\left( {\sin \left( \alpha \right)} \right)^{2} x^{3} }}\left( {l_{0} ^{2} + \frac{{40{\kern 1pt} l_{1} ^{2} }}{{27}} + 5/9{\kern 1pt} l_{2} ^{2} } \right) + \frac{{ - M3}}{{x^{2} \sin \left( \alpha \right)}} \\ & + \frac{{ - \left( {\left( { - 70{\kern 1pt} x^{2} + 189{\kern 1pt} l_{0} ^{2} + 144{\kern 1pt} l_{1} ^{2} + 105{\kern 1pt} l_{2} ^{2} } \right)\left( {\cos \left( \alpha \right)} \right)^{2} + 70{\kern 1pt} x^{2} - 189{\kern 1pt} l_{0} ^{2} - 72{\kern 1pt} l_{1} ^{2} - 45{\kern 1pt} l_{2} ^{2} } \right)M2}}{{30x^{4} \left( {\sin \left( \alpha \right)} \right)^{3} }}, \\ E_{{32}} = & \frac{{ - M0}}{{\left( {\sin \left( \alpha \right)} \right)^{2} x^{2} }}\left( {\left( {x^{2} - \frac{{9{\kern 1pt} l_{0} ^{2} }}{{10}} - \frac{{16{\kern 1pt} l_{1} ^{2} }}{5} + 3/2{\kern 1pt} l_{2} ^{2} } \right)\left( {\cos \left( \alpha \right)} \right)^{2} - x^{2} - 4/3{\kern 1pt} l_{1} ^{2} - 2{\kern 1pt} l_{2} ^{2} } \right) + \frac{{M1}}{{x^{4} \left( {\sin \left( \alpha \right)} \right)^{4} }} \\ & \left[ {\left( {x^{2} - \frac{{27{\kern 1pt} l_{0} ^{2} }}{{10}} - \frac{{16{\kern 1pt} l_{1} ^{2} }}{{15}} - 5/2{\kern 1pt} l_{2} ^{2} } \right)\left( {\cos \left( \alpha \right)} \right)^{4} + \left( { - 2{\kern 1pt} x^{2} + \frac{{27{\kern 1pt} l_{0} ^{2} }}{5} + 4{\kern 1pt} l_{1} ^{2} + 4{\kern 1pt} l_{2} ^{2} } \right)\left( {\cos \left( \alpha \right)} \right)^{2} + x^{2} - \frac{{27{\kern 1pt} l_{0} ^{2} }}{{10}} - 8/5{\kern 1pt} l_{1} ^{2} - 3/2{\kern 1pt} l_{2} ^{2} } \right] \\ & + \frac{{M2}}{{30x^{3} \left( {\sin \left( \alpha \right)} \right)^{3} }}[27{\kern 1pt} \left( {l_{0} ^{2} - \frac{{40{\kern 1pt} l_{1} ^{2} }}{{27}} + 5/3{\kern 1pt} l_{2} ^{2} } \right)\left( {\cos \left( \alpha \right)} \right)^{3} - 27{\kern 1pt} \left( {l_{0} ^{2} + \frac{{56{\kern 1pt} l_{1} ^{2} }}{{27}} + 5/3{\kern 1pt} l_{2} ^{2} } \right)\cos \left( \alpha \right)], \\ E_{{33}} = & \frac{{M2{\kern 1pt} \left( {81{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} - 15{\kern 1pt} l_{2} ^{2} } \right)}}{{30\sin \left( \alpha \right)x}},E_{{34}} = \frac{{M2{\kern 1pt} \left( {81{\kern 1pt} l_{0} ^{2} + 8{\kern 1pt} l_{1} ^{2} - 15{\kern 1pt} l_{2} ^{2} } \right)}}{{30x^{3} \left( {\sin \left( \alpha \right)} \right)^{3} }}. \\ \end{aligned}$$
(105)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattaheian Dehkordi, S., Tadi Beni, Y. Size-dependent continuum-based model of a truncated flexoelectric/flexomagnetic functionally graded conical nano/microshells. Appl. Phys. A 128, 320 (2022). https://doi.org/10.1007/s00339-022-05386-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05386-3

Keywords

Navigation