Skip to main content
Log in

Buckling analysis of functionally graded microbeams based on the strain gradient theory

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The buckling behavior of size-dependent microbeams made of functionally graded materials (FGMs) for different boundary conditions is investigated on the basis of Bernoulli–Euler beam and modified strain gradient theory. The higher-order governing differential equation for buckling with all possible classical and non-classical boundary conditions is obtained by a variational statement. The effects of the power of the material property variation function, boundary conditions, slenderness ratio, ratio of additional material length scale parameters for two constituents, beam thickness-to-additional material length scale parameter ratio on the buckling response of FGM microbeams are investigated. Some comparative results are presented in tabular and graphical form in order to show the differences between the results obtained by the present model and those predicted by modified couple stress and classical continuum models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sankar B.V.: An elasticity solution for functionally graded beams. Compos. Sci. Technol. 61, 689–696 (2001)

    Article  Google Scholar 

  2. Aydoğdu M., Taşkın V.: Free vibration analysis of functionally graded beams with simply supported edges. Mater. Des. 28, 1651–1656 (2007)

    Article  Google Scholar 

  3. Aydoğdu M.: Semi-inverse method for vibration and buckling of axially functionally graded beams. J. Reinforced Plas. Compos. 27, 683–691 (2008)

    Article  Google Scholar 

  4. Ke L.-L., Yang J., Kitipornchai S., Xiang Y.: Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials. Mech. Adv. Mater. Struct. 16, 488–502 (2009)

    Article  Google Scholar 

  5. Kitipornchai S., Ke L.-L., Yang J., Xiang Y.: Nonlinear vibration of edge cracked functionally graded Timoshenko beams. J. Sound Vib. 324, 962–982 (2009)

    Article  Google Scholar 

  6. Şimşek M., Kocatürk T.: Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load. Compos. Struct. 90, 465–473 (2009)

    Article  Google Scholar 

  7. Şimşek M.: Vibration analysis of a functionally graded beam under a moving mass by using different beam theories. Compos. Struct. 92, 904–917 (2010)

    Article  Google Scholar 

  8. Şimşek M., Kocatürk T., Akbaş Ş.D.: Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load. Compos. Struct. 94, 2358–2364 (2012)

    Article  Google Scholar 

  9. Hung E.S., Senturia S.D.: Extending the travel range of analog-tuned electrostatic actuators. J. Microelectromech. Syst. 8, 497–505 (1999)

    Article  Google Scholar 

  10. Li X., Bhushan B., Takashima K., Baek C.-W., Kim Y.-K.: Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Ultramicroscopy 97, 481–494 (2003)

    Article  Google Scholar 

  11. Moser Y., Gijs M.A.M.: Miniaturized flexible temperature sensor. J. Microelectromech. Syst. 16, 1349–1354 (2007)

    Article  Google Scholar 

  12. Fleck N.A., Muller G.M., Ashby M.F., Hutchinson J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994)

    Article  Google Scholar 

  13. Stolken J.S., Evans A.G.: A microbend test method for measuring the plasticity length scale. Acta Metall. Mater. 46, 5109–5115 (1998)

    Article  Google Scholar 

  14. Haque M.A., Saif M.T.A.: Strain gradient effect in nanoscale thin films. Acta Mater. 51, 3053–3061 (2003)

    Article  MATH  Google Scholar 

  15. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  16. Yang F., Chong A.C.M., Lam D.C.C., Tong P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  17. Park S.K., Gao X.-L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)

    Article  Google Scholar 

  18. Kong S., Zhou S., Nie Z., Wang K.: The size-dependent natural frequency of Bernoulli–Euler micro-beams. Int. J. Eng. Sci. 46, 427–437 (2008)

    Article  MATH  Google Scholar 

  19. Ma H.M., Gao X.-L, Reddy J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Şimşek M.: Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory. Int. J. Eng. Sci. 48, 1721–1732 (2010)

    Article  MATH  Google Scholar 

  21. Asghari M., Ahmadian M.T., Kahrobaiyan M.H., Rahaeifard M.: On the size-dependent behavior of functionally graded micro-beams. Mater. Des. 31, 2324–2329 (2010)

    Article  Google Scholar 

  22. Asghari M., Kahrobaiyan M.H., Ahmadian M.T.: A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int. J. Eng. Sci. 48, 1749–1761 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Xia W., Wang L., Yin L.: Nonlinear non-classical microscale beams: Static bending, postbuckling and free vibration. Int. J. Eng. Sci. 48, 2044–2053 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Asghari M., Rahaeifard M., Kahrobaiyan M.H., Ahmadian M.T.: The modified couple stress functionally graded Timoshenko beam formulation. Mater. Des. 32, 1435–1443 (2011)

    Article  Google Scholar 

  25. Ke L.-L., Wang Y.-S.: Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. Compos. Struct. 93, 342–350 (2011)

    Article  Google Scholar 

  26. Reddy J.N.: Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59, 2382–2389 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ke L.-L., Wang Y.-S., Yang J., Kitipornchai S.: Nonlinear free vibration of size-dependent functionally graded microbeams. Int. J. Eng. Sci. 50, 256–267 (2012)

    Article  MathSciNet  Google Scholar 

  28. Nateghi A., Salamat-Talab M., Rezapour J., Daneshian B.: Size dependent buckling analysis of functionally graded micro beams based on modified couple stress theory. Appl. Math. Model. 36, 4971–4987 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Reddy J.N., Arbind A.: Bending relationships between the modified couple stress-based functionally graded Timoshenko beams and homogeneous Bernoulli–Euler beams. Ann. Solid Struct. Mech. 3, 15–26 (2012)

    Article  Google Scholar 

  30. Salamat-Talab M., Nateghi A., Torabi J.: Static and dynamic analysis of third-order shear deformation FG micro beam based on modified couple stress theory. Int. J. Mech. Sci. 57, 63–73 (2012)

    Article  Google Scholar 

  31. Akgöz B., Civalek Ö.: Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory. Compos. Struct. 98, 314–322 (2013)

    Google Scholar 

  32. Şimşek M., Kocatürk T., Akbaş Ş.D.: Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory. Compos. Struct. 95, 740–747 (2013)

    Article  Google Scholar 

  33. Şimşek M., Reddy J.N.: Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. Int. J. Eng. Sci. 64, 37–53 (2013)

    Article  Google Scholar 

  34. Tsiatas G.C.: A new Kirchhoff plate model based on a modified couple stress theory. Int. J. Solids Struct. 46, 2757–2764 (2009)

    Article  MATH  Google Scholar 

  35. Yin L., Qian Q., Wang L., Xia W.: Vibration analysis of microscale plates based on modified couple stress theory. Acta Mech. Solida Sinica 23, 386–393 (2010)

    Google Scholar 

  36. Jomehzadeh E., Noori H.R., Saidi A.R.: The size-dependent vibration analysis of micro-plates based on a modified couple stress theory. Physica E 43, 877–883 (2011)

    Article  Google Scholar 

  37. Ma H.M., Gao X.-L., Reddy J.N.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220, 217–235 (2011)

    Article  MATH  Google Scholar 

  38. Asghari M.: Geometrically nonlinear micro-plate formulation based on the modified couple stress theory. Int. J. Eng. Sci. 51, 292–309 (2012)

    Article  MathSciNet  Google Scholar 

  39. Ke L.-L., Wang Y.-S., Yang J., Kitipornchai S.: Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory. J. Sound Vib. 331, 94–106 (2012)

    Article  Google Scholar 

  40. Reddy J.N., Kim J.: A nonlinear modified couple stress-based third-order theory of functionally graded plates. Compos. Struct. 94, 1128–1143 (2012)

    Article  Google Scholar 

  41. Reddy J.N., Berry J.: Nonlinear theories of axisymmetric bending of functionally graded circular plates with modified couple stress. Compos. Struct. 94, 3664–3668 (2012)

    Article  Google Scholar 

  42. Akgöz B., Civalek Ö.: Free vibration analysis of single-layered graphene sheets in an elastic matrix via modified couple stress theory. Mater. Des. 42, 164–171 (2012)

    Google Scholar 

  43. Asghari, M., Taati, E.: A size-dependent model for functionally graded micro-plates for mechanical analyses. J. Vib. Control. (2012). doi:10.1177/1077546312442563

  44. Kong S., Zhou S., Nie Z., Wang K.: Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int. J. Eng. Sci. 47, 487–498 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Akgöz B., Civalek Ö.: Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int. J. Eng. Sci. 49, 1268–1280 (2011)

    Google Scholar 

  46. Akgöz B., Civalek Ö.: Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Arch. Appl. Mech. 82, 423–443 (2012)

    Google Scholar 

  47. Wang B., Zhao J., Zhou S.: A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A/Solids 29, 591–599 (2010)

    Article  Google Scholar 

  48. Wang B., Zhou S., Zhao J., Chen X.: A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory. Eur. J. Mech. A/Solids 30, 517–524 (2011)

    Article  MATH  Google Scholar 

  49. Kahrobaiyan M.H., Tajalli S.A., Movahhedy M.R., Akbari J., Ahmadian M.T.: Torsion of strain gradient bars. Int. J. Eng. Sci. 49, 856–866 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kahrobaiyan M.H., Asghari M., Rahaeifard M., Ahmadian M.T.: A nonlinear strain gradient beam formulation. Int. J. Eng. Sci. 49, 1256–1267 (2011)

    Article  MathSciNet  Google Scholar 

  51. Zhao J., Zhou S., Wang B., Wang X.: Nonlinear microbeam model based on strain gradient theory. Appl. Math. Model. 36, 2674–2686 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Asghari M., Kahrobaiyan M.H., Nikfar M., Ahmadian M.T.: A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory. Acta Mech. 223, 1233–1249 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  53. Kahrobaiyan M.H., Rahaeifard M., Tajalli S.A., Ahmadian M.T.: A strain gradient functionally graded Euler–Bernoulli beam formulation. Int. J. Eng. Sci. 52, 65–76 (2012)

    Article  MathSciNet  Google Scholar 

  54. Ansari R., Gholami R., Sahmani S.: Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory. Compos. Struct. 94, 221–228 (2011)

    Article  Google Scholar 

  55. Sadeghi H., Baghani M., Naghdabadi R.: Strain gradient elasticity solution for functionally graded micro-cylinders. Int. J. Eng. Sci. 50, 22–30 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Civalek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akgöz, B., Civalek, Ö. Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta Mech 224, 2185–2201 (2013). https://doi.org/10.1007/s00707-013-0883-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0883-5

Keywords

Navigation