Skip to main content
Log in

Hydrothermal synthesis of In2O3–ZnO nanocomposite and their enhanced photocatalytic properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, an indium oxide–zinc oxide (In2O3–ZnO) nanocomposite is successfully synthesized via a facile hydrothermal process. The samples are characterized using X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, ultraviolet–visible diffuse reflectance spectroscopy, Fourier–transform infrared spectroscopy, and so on. The photocatalytic test results show that the photocatalytic degradation of methyl orange efficiency of 15% In2O3–ZnO nanocomposite can be more than 96.62% after 120 min, which is much higher than that of In2O3 and ZnO particles. The enhanced photocatalytic activity is attributed to the reduction in electrons (e) and holes (h+) recombination in the photocatalytic process; it allows the rapid separation of photo-generated charge carriers, thus enhancing their photocatalytic activity. Finally, a possible photocatalytic reaction mechanism is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data used to support this study are included within the paper.

References

  1. M. Lan, G. Fan, L. Yang, F. Li, Enhanced visible-light-induced photocatalytic performance of a novel ternary semiconductor coupling system based on hybrid Zn-In mixed metal oxide/g-C3N4 composites. RSC Adv. 5, 5725 (2015)

    Article  ADS  Google Scholar 

  2. C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 81, 536–551 (2018)

    Article  Google Scholar 

  3. W. K. Zhang, Q. Y. Zhong, X. M. Liu, Q. Lu, Inorganic functionalization of CdSexS1-x/ZnS core-shell quantum dots and their photoelectric properties. Physica Status Solidi (A). 217, 2000010 (2020)

  4. H. Cheng, W.K. Zhang, X.M. Liu, T.F. Tang, J.H. Xiong, Fabrication of titanium dioxide/carbon fiber (TiO2/CF) composites for removal of methylene blue (MB) from aqueous solution with enhanced photocatalytic activity. J. Chem. 9, 1–11 (2021)

    Article  Google Scholar 

  5. H. Cheng, X.N. Li, T.H. Li, D.F. Qin, T.F. Tang, Y.Q. Li, G.X. Wang, Electrospun nanofibers with high specific surface area to prepare modified electrodes for electrochemiluminescence detection of azithromycin. J. Nanomater. 93, 1–10 (2021)

    Article  Google Scholar 

  6. X.M. Liu, F.I. Chowdhury, L. Meng, Q. Xu, X. Wang, Luminescent films employing quantum dot-cellulose nanocrystal hybrid nanomaterials. Mater. Lett. 294, 129737 (2021)

    Article  Google Scholar 

  7. X.M. Liu, Q.Y. Zhong, W.M. Guo, W.K. Zhang, Y.Y. Ya, Y.Q. Xia, Novel platycladus orientalis-shaped Fe-doped ZnO hierarchical nanoflower decorated with Ag nanoparticles for photocatalytic application. J. Alloys Compd. 880, 160501 (2021)

    Article  Google Scholar 

  8. X.M. Liu, Y. Liu, W.K. Zhang, Q.Y. Zhong, X.Y. Ma, In situ self-assembly of 3D hierarchical 2D/2D CdS/g-C3N4 hereojunction with excellent photocatalytic performance. Mater. Sci. Semicond. Process. 105, 104734 (2020)

    Article  Google Scholar 

  9. X. M. Liu, S. B. Yao, Y. Liu, W. K. Zhang, F. M. Fu, H. Y. He, Metal ion-induced synthesis of hierarchical ZnO architectures with various morphologies and their photocatalytic performances. Springer Singapore. (2017).

  10. H.R. Liu, C.J. Hu, H.F. Zhai, J. Yang, X.G. Liu, H.S. Jia, Fabrication of In2O3/ZnO@Ag nanowire ternary composites with enhanced visible light photocatalytic activity. RSC Adv. 7, 37220–37229 (2017)

    Article  ADS  Google Scholar 

  11. N. Talebian, M.R. Nilforoushan, Z. Salehi, Effect of heterojunction on photocatalytic properties of multilayered ZnO-based thin films. Ceram. Int. 38, 4623–4630 (2012)

    Article  Google Scholar 

  12. S.G. Kumar, K.S.R.K. Rao, Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO). Appl. Surf. Sci. 391, 124–148 (2017)

    Article  ADS  Google Scholar 

  13. X. Xiang, L.S. Xie, Z.W. Li, F. Li, Ternary MgO/ZnO/In2O3 heterostructured photocatalysts derived from a layered precursor and visible-light-induced photocatalytic activity. Chem. Eng. J. 221, 222–229 (2013)

    Article  Google Scholar 

  14. N. Talebian, M.R. Nilforoushan, R.R. Ghasem, Enhanced photocatalytic activities of ZnO thin films: a comparative study of hybrid semiconductor nanomaterials. J. Sol-Gel. Sci. Technol. 64, 36–46 (2012)

    Article  Google Scholar 

  15. N. Talebian, M.R. Nilforoushan, Comparative study of the structural, optical and photocatalytic properties of semiconductor metal oxides toward degradation of methylene blue. Thin Solid Films 518, 2210–2215 (2010)

    Article  ADS  Google Scholar 

  16. X.N. Liu, Q.F. Lu, J.H. Liu, Electrospinning preparation of one-dimensional ZnO/Bi2WO6 heterostructured sub-microbelts with excellent photocatalytic performance. J. Alloys Compd. 662, 598 (2016)

    Article  Google Scholar 

  17. C. Han, M.Q. Yang, B. Weng, Y.J. Xu, Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon. Phys. Chem. Chem. Phys. 16, 16891 (2014)

    Article  Google Scholar 

  18. Y.L. Xing, W.X. Que, X.T. Yin, Z.L. He, X.B. Liu, Y.W. Yang, J.Y. Shao, L.B. Kong, In2O3/Bi2Sn2O7 heterostructured nanoparticles with enhanced photocatalytic activity. Appl. Surf. Sci. 387, 36–44 (2016)

    Article  ADS  Google Scholar 

  19. F. Zhao, Q. F. Lu, Z. L. Xiu, C. F. Zhu, Preparation and photocatalytic performance of one-dimensional In2O3 nanofibers, CuO microfibers and CuO/In2O3 heterostructured nanofibers by electrospinning process. Nano: brief reports and reviews, 11, 1650048 (2016)

  20. M.M. Sun, Z.Y. Chen, Enhanced photoelectrochemical cathodic protection performance of the In2O3/TiO2 composite. J. Electrochem. Soc. 162, C96–C104 (2015)

    Article  Google Scholar 

  21. J.K. Zhao, S.S. Ge, D. Pan, Y.L. Pan, V. Murugadoss, R. Li, W. Xie, Y. Lu, T.T. Wu, E.K. Wujcik, Q. Shao, X.M. Mai, Z.H. Guo, Microwave hydrothermal synthesis of In2O3-ZnO nanocomposites and their enhanced photoelectrochemical properties. J. Electrochem. Soc. 166, H3074–H3083 (2019)

    Article  Google Scholar 

  22. S. Martha, K.H. Reddy, K.M. Parida, Fabrication of In2O3 modified ZnO for enhancing stability, optical behaviour, electronic properties and photocatalytic activity for hydrogen production under visible light. J. Mater. Chem. A 2, 3621–3631 (2014)

    Article  Google Scholar 

  23. H.R. Liu, X. He, Y.C. Hu, X.G. Liu, H.S. Jia, B.S. Xu, One-step hydrothermal synthesis of In2O3-ZnO heterostructural composites and their enhanced visible-light photocatalytic activity. Mater. Lett. 131, 104–107 (2014)

    Article  Google Scholar 

  24. N. Lu, C.L. Shao, X.H. Li, F.J. Miao, K.X. Wang, Y.C. Liu, A facile fabrication of nitrogen-doped electrospun In2O3 nanofibers with improved visible-light photocatalytic activity. Appl. Surf. Sci. 391, 668–676 (2017)

    Article  ADS  Google Scholar 

  25. F. Zhao, Q.F. Lu, S.W. Liu, Preparation and characterization of In2O3/ZnO heterostructured microbelts by sol-gel combined with electrospinning method. J. Sol-Gel. Sci. Technol. 69, 357–363 (2014)

    Article  Google Scholar 

  26. F.L. Zhou, X.J. Li, J. Shu, J. Wang, Synthesis and visible light photo-electrochemical behaviors of In2O3-sensitized ZnO nanowire array film. J. Photochem. Photobiol., A 219, 132–138 (2011)

    Article  Google Scholar 

  27. Z.Y. Wang, B.B. Huang, Y. Dai, X.Y. Qin, X.Y. Zhang, P. Wang, H.X. Liu, J.X. Yu, Highly photocatalytic ZnO/In2O3 heteronanostructures synthesized by a coprecipitation method. The Journal of Physical Chemistry C 113, 4612–4617 (2009)

    Article  Google Scholar 

  28. F. Zhao, Q.F. Lu, S.W. Liu, C.Q. Wang, In2O3/ZnO heterostructured nanotubes: electrospinning fabrication, characterization, and highly enhanced photocatalytic properties. J. Sol-Gel. Sci. Technol. 72, 137–143 (2014)

    Article  Google Scholar 

  29. B.X. Li, T.X. Liu, Y.F. Wang, Z.F. Wang, ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance. J. Colloid Interface Sci. 377, 114–121 (2012)

    Article  ADS  Google Scholar 

  30. Y.X. Du, P. Ding, Synthesis and cathodoluminescence of In2O3-SnO2 nanowires heterostructures. J. Alloy. Compd. 507, 456–459 (2010)

    Article  Google Scholar 

  31. Q.P. Luo, X.Y. Yu, B.X. Lei, H.Y. Chen, D.B. Kuang, C.Y. Su, Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity. J. Phys. Chem. C 116, 8111–8117 (2012)

    Article  Google Scholar 

  32. J.B. Mu, C.L. Shao, Z.C. Guo, Z.Y. Zhang, M.Y. Zhang, P. Zhang, B. Chen, Y.C. Liu, High Photocatalytic activity of ZnO-carbon nanofiber heteroarchitectures. ACS Appl. Mater. Interfaces 3, 590–596 (2011)

    Article  Google Scholar 

  33. S. Rehman, R. Ullah, A.M. Butt, N.D. Gohar, Strategies of making TiO2 and ZnO visible light active. ChemInform 170, 560–569 (2010)

    Google Scholar 

  34. M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 605, 2–19 (2016)

    Article  ADS  Google Scholar 

  35. R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, V. Narayanan, A. Stephen, Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater. Sci. Eng., C 33, 91–98 (2013)

    Article  Google Scholar 

  36. J.X. Sun, Y.P. Yuan, L.G. Qiu, X. Jiang, A.J. Xie, Y.H. Shen, J.F. Zhu, Fabrication of composite photocatalyst g-C3N4-ZnO and enhancement of photocatalytic activity under visible light. Dalton Trans. 41, 6756–6763 (2012)

    Article  Google Scholar 

  37. R. Saravanan, E. Sacari, F. Gracia, M.M. Khan, E. Mosquera, V.K. Gupta, Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J. Mol. Liq. 221, 1029–1033 (2016)

    Article  Google Scholar 

  38. C.G. Tian, Q. Zhang, A.P. Wu, M.J. Jiang, Z.L. Liang, B.J. Jiang, H.G. Fu, Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem. Commun. 48, 2858–2860 (2012)

    Article  Google Scholar 

  39. X. Zhang, L.Z. Zhang, T.F. Xie, D.J. Wang, Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures. J. Phys. Chem. C 113, 7371–7378 (2009)

    Article  Google Scholar 

  40. L.P. Xu, Y.L. Hu, C. Pelligra, C.H. Chen, L. Jin, H. Huang, S. Sithambaram, M. Aindow, R. Joesten, S.L. Suib, ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity. Chem. Mater. 21, 2875–2885 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 21968005), the Opening Project of Guangxi Key Laboratory of Green Processing of Sugar Resources (No. GXTZY201701), and the High Levels of Innovation Team and Excellence Scholars Program in Colleges of Guangxi (Gui Jiaoren [2014] No. 7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Cheng.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Huang, W., Wu, Q. et al. Hydrothermal synthesis of In2O3–ZnO nanocomposite and their enhanced photocatalytic properties. Appl. Phys. A 128, 159 (2022). https://doi.org/10.1007/s00339-021-05237-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05237-7

Keywords

Navigation