Skip to main content
Log in

In2O3/ZnO heterostructured nanotubes: electrospinning fabrication, characterization, and highly enhanced photocatalytic properties

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In2O3/ZnO heterostructured nanotubes with cubic In2O3 and hexagonal ZnO were successfully synthesized via the combination of electrospinning and calcination process. The as-prepared materials are investigated by using thermogravimetric and differential scanning calorimetry, fourier transform infrared spectroscope, X-ray diffraction, scanning electron microscope and high-resolution transmission electron microscope techniques. The formation mechanism of In2O3/ZnO heterostructured nanotubes based on the kinetics of phase separation which results from the decomposition of polyvinyl pyrrolidone during the calcination process is also discussed in detail. The photocatalytic degradation tests reveal that In2O3/ZnO heterostructured nanotubes exhibit the highly improved photocatalytic properties compared with the single-component ZnO and In2O3 materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xia BY, Yang PD, Sun YG, Wu YY, Mayers B, Gates B (2003) Adv Mater 5:353–389

    Article  Google Scholar 

  2. Bae C, Yoo H, Kim S, Lee K, Kim J, Sung MM, Shin H (2008) Chem Mater 20:756–767

    Article  Google Scholar 

  3. Wang ZY, Huang BB, Dai Y, Qin XY, Zhang XY, Wang P, Liu HX, Yu JX (2009) J Phys Chem C 113:4612–4617

    Article  Google Scholar 

  4. Xia J, Di J, Yin S, Xu H, Zhang J, Xu Y, Xu L, Li H, Ji M (2014) RSC Adv 4:82–90

    Article  Google Scholar 

  5. Zu P, Tang ZK, Wong GKL, Kawasaki M, Ohtomo A, Koinuma H, Segawa Y (1997) Solid State Comm 8:459–463

    Article  Google Scholar 

  6. Hoa LT, Hur SH (2013) Phys Status Solidi A 210:1213–1216

    Article  Google Scholar 

  7. Xie YL, Zhong G, Du GH (2012) Acta Chim Sin 70:122–125

    Google Scholar 

  8. Hou DF, Luo W, Huang YH, Yu JC, Hu XL (2013) Nanoscale 5:2028–2035

    Article  Google Scholar 

  9. Xu L, Zheng RF, Liu SH, Song J, Chen JS, Dong B, Song HW (2012) Inorg Chem 51:7733–7740

    Article  Google Scholar 

  10. Zhao F, Lu QF, Liu SW (2014) J Sol Gel Sci Technol 69:357–363

    Article  Google Scholar 

  11. Zhang ZY, Shao CL, Li XH, Wang CH, Zhang MY, Liu YC (2010) ACS Appl Mater Interface 2:2915–2923

    Article  Google Scholar 

  12. Liu W, Chen SF (2010) J Electrochem Soc 157:1029–1035

    Article  Google Scholar 

  13. Lu QF, Liu SW, Ren MM, Song LJ, Zhao G (2012) J Sol Gel Sci Technol 61:169–174

    Article  Google Scholar 

  14. Chen WS, Huang DA, Chen HC, Shie TY, Hsieh CH, Liao JD, Kuo CS (2009) Cryst Growth Des 9:4071–4077

    Google Scholar 

  15. Azhari SJ, Dish MA (1998) Polym Degrad Stab 60:253–256

    Article  Google Scholar 

  16. Li ZP, Fan YJ, Zhan JH (2010) Eur J Inorg Chem 21:3348–3353

    Article  Google Scholar 

  17. Siddheswaran R, Sankar R, Babu MR, Rathnakumari M, Jayavel R, Murugakoothan P, Sureshkumar P (2006) Cryst Res Technol 5:446–449

    Article  Google Scholar 

  18. Lu QF, Wang CQ, Liu SW, Ren MM (2011) Mater Trans 6:1206–1210

    Article  Google Scholar 

  19. Zhang YF, Li JY, Li Q, Zhu L, Liu XD, Zhong XH, Meng J, Cao XQ (2007) Scripta Mater 56:409–412

    Article  Google Scholar 

  20. Zhang JH, Wen B, Wang F, Ding YF, Zhang SM, Yang MS (2011) J Polym Sci Pol Phys 49:1360–1368

    Article  Google Scholar 

  21. Chen X, Shen S, Guo L, Mao SS (2010) Chem Rev 110:6503–6570

    Article  Google Scholar 

  22. Ye SH, Zhang D, Liu HQ, Zhou JP (2011) J Appl Polym Sci 3:1757–1764

    Article  Google Scholar 

  23. Xu L, Dong B, Wang Y, Bai X, Liu Q, Song HW (2010) Sens Actuators, B 147:531–538

    Article  Google Scholar 

  24. Parka DH, Sona KY, Lee JH, Kima JJ, Lee JS (2004) Solid State Ion 172:431–434

    Article  Google Scholar 

  25. Hopper EM, Peng HW, Hawks SA, Freeman AJ, Mason TO (2012) J Appl Phys 112:093712-1–093712-5

    Google Scholar 

  26. Chen Sf, Chen L, Gao S, Cao GY (2005) Powder Technol 160:198–202

    Article  Google Scholar 

  27. Chen SY, Wang LW (2012) Chem Mater 24:3659–3666

    Article  Google Scholar 

  28. Chen YC, Pu YC, Hsu YJ (2012) J Phys Chem C 116:2967–2975

    Article  Google Scholar 

  29. Hoffmann MR, Martin ST, Choi W, Bahnemannt DW (1995) Chem Rev 95:69–96

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51172133), Natural Science Foundation of Shandong Province (Grant No. ZR2013BQ001), Project of Independent Innovation of University Institute of Jinan (Grant No. 201311034) and Project of Shandong Province Higher Educational Science and Technology Program (Grant No. J13LA01). The authors also thank the Analytical Center of Qilu University of Technology for technological support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qifang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, F., Lu, Q., Liu, S. et al. In2O3/ZnO heterostructured nanotubes: electrospinning fabrication, characterization, and highly enhanced photocatalytic properties. J Sol-Gel Sci Technol 72, 137–143 (2014). https://doi.org/10.1007/s10971-014-3438-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3438-x

Keywords

Navigation