Skip to main content

Advertisement

Log in

Influence of carbon nanotubes reinforcement on the structural feature and bioactivity of SiO2–Al2O3–MgO–K2CO3–CaO–MgF2 bioglass

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Various glass compositions were synthesized using a melt-quenching technique doped with different concentrations of carbon nanotubes (CNTs) from 0.1 to 0.7% in the glassy system SiO2–Al2O3–MgO–K2CO3–CaO–MgF2. Density was determined by employing a liquid displacement method. Several physical parameters such as molar volume (Vm), oxygen molar volume (Vo) were calculated and found to be decreases from 36.49 ± 0.729 to 24.28 ± 0.485 × 10–6 m3/mol, and 21.86 ± 0.437 to 14.60 ± 0.292 × 10–6 m3/mol, respectively. However, density and oxygen packing density (OPD) increases from 1.99 ± 0.099 to 2.98 ± 0.149 × 103 kg/m3 and 45.74 ± 0.914 to 68.49 ± 1.369 × 10–3 kg-atom/l with increasing content of CNT. In the present study, reinforcement effects of CNTs were explained using several spectroscopic techniques like Fourier transform infrared, ultraviolet–visible (UV–Vis), Raman, and nuclear magnetic resonance (NMR) spectroscopy, respectively. Based on Tauc plots of the UV–Vis spectra, the energy band gap was determined and their values decreased from 6.95 to 6.23 × 10–19 J which is owing to the formation of non-bridging oxygen (NBO) in the glassy matrix. Contact angle measurements were also performed to check the wettability of the glasses and their values increased with CNT % from 18.14° to 77.8°. 29Si-MAS-NMR spectroscopic study revealed the random distribution of two different cations, \({\text{Ca}}^{{2 + }}\) and \({\text{Mg}}^{{2 + }}\) within the glasses which lead to structural and topological frustration. To check the cell viability, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and alkaline phosphatase assay were also performed. Owing to outstanding stability in various fluids like saline water, distilled water, and hydrochloric acid, the fabricated glasses exhibited functional activities with an adequate proliferation of rat calverail osteoblast cells. Consequently, based on the various characterization techniques such as mechanical, tribological, and biological activities, the fabricated bioactive glasses can be used for biomedical and multifunctional applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y. Nan, W.E. Lee, P.F. James, Crystallization behavior of CaO-P2O5 glass with TiO2, SiO2 and Al2O3 additions. J. Am. Ceram. Soc. 75, 1641–1647 (1992)

    Article  Google Scholar 

  2. T. Kokubo, T. Matsushita, H. Takadama, Titania-based bioactive materials. J. Eur. Ceram. Soc. 27, 1553–1558 (2007)

    Article  Google Scholar 

  3. Y. Liping, H. Xiao, Y. Cheng, Influence of magnesia on the structure and properties of MgO–Al2O3–SiO2–F glass-ceramics. Ceram. Int. 34, 63–68 (2008)

    Article  Google Scholar 

  4. L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenlee Jr., Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 5, 117–141 (1971)

    Article  Google Scholar 

  5. Y. Cheng, H. Xiao, C. Shuguang, B. Tang, Structure and crystallization of B2O3 Al2O3–SiO2 glass. Phys. B. 404, 1230–1234 (2009)

    Article  ADS  Google Scholar 

  6. M. Tommila, J. Jokinen, T. Wilson, A.P. Forsback, P. Saukko, R. Penttinen, E. Ekholm, Bioactive glass-derived hydroxyapatite-coating promotes granulation tissue growth in subcutaneous cellulose implants in rats. Acta Biomater. 4, 354–361 (2008)

    Article  Google Scholar 

  7. T. Matsumoto, R. Kuroda, Y. Mifune, A. Kawamoto, T. Shoji, M. Miwa, T. Asahara, M. Kurosaka, Circulating endothelial/skeletal progenitor cells for bone regeneration and healing. Bone 43, 434–439 (2008)

    Article  Google Scholar 

  8. Q. Yang, G. Sui, Y.Z. Shi, S. Duan, J.Q. Bao, Q. Cai, X.P. Yang, Osteocompatibility characterization of polyacrylonitrile carbon nanofibers containing bioactive glass nanoparticles. Carbon 56, 288–295 (2013)

    Article  Google Scholar 

  9. J. Wilson, G.H. Piggott, F.J. Schoen, L.L. Hench, Toxicology and biocompatibility of bioglasses. J. Biomed. Mater. Res. 15, 805–817 (1981)

    Article  Google Scholar 

  10. W. Vogel, W. Höland, K. Naumann, J. Gummel, Development of machineable bioactive glass ceramics for medical uses. J. Non-Cryst. Solids 80, 34–51 (1986)

    Article  ADS  Google Scholar 

  11. L.L. Hench, Bioceramics: from concept to clinic. J. Am. Ceram. Soc. 74, 1487–1510 (1991)

    Article  Google Scholar 

  12. P. Stoor, V. Kirstilä, E. Söderling, I. Kangasniemi, K. Herbst, A. Yli-Urpo, Interactions between bioactive glass and periodontal pathogens. Microb. Ecol. Health Dis. 9, 109–114 (1996)

    Article  Google Scholar 

  13. A.M. El-Kady, A.F. Ali, R.A. Rizk, M.M. Ahmed, Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles. Ceram. Int. 38, 177–188 (2012)

    Article  Google Scholar 

  14. S.-J. Shih, C.-Y. Chen, Y.-C. Lin, J.-C. Lee, R.-J. Chung, Investigation of bioactive and antibacterial effects of graphene oxide-doped bioactive glass. Adv. Powder Technol. 27, 1013–1020 (2016)

    Article  Google Scholar 

  15. S.-J. Shih, B.-J. Hong, Y.-C. Lin, Novel graphene oxide-containing antibacterial mesoporous bioactive glass. Ceram. Int. 43, S784–S788 (2017)

    Article  Google Scholar 

  16. J.R. Jones, Reprint of: review of bioactive glass: from Hench to hybrids. Acta Biomater. 23, S53–S82 (2015)

    Article  Google Scholar 

  17. L.L. Hench, H.A. Paschall, Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J. Biomed. Mater. Res. 7, 25–42 (1973)

    Article  Google Scholar 

  18. J.R. Jones, D.S. Brauer, L. Hupa, D.C. Greenspan, Bioglass and bioactive glasses and their impact on healthcare. Int. J. Appl. Glass Sci. 7, 423–434 (2016)

    Article  Google Scholar 

  19. F. Baino, G. Novajra, V. Miguez-pacheco, A.R. Boccaccini, C. Vitale-brovarone, Bioactive glasses: special applications outside the skeletal system. J. Non-Cryst. Solids 432, 15–30 (2016)

    Article  ADS  Google Scholar 

  20. K.E. Wallace, R.G. Hill, J.T. Pembroke, C.J. Brown, P.V. Hatton, Influence of sodium oxide content on bioactive glass properties. J. Mater. Sci. Mater. Med. 10, 697–701 (1999)

    Article  Google Scholar 

  21. I. Kansal, A. Reddy, F. Muñoz, S. Choi, H. Kim, D.U. Tulyaganov, J.M.F. Ferreira, Structure, biodegradation behavior and cytotoxicity of alkali-containing alkaline-earth phosphosilicate glasses. Mater. Sci. Eng. C. 44, 159–165 (2014)

    Article  Google Scholar 

  22. T. Fiedler, A.C. Videira, P. Bártolo, M. Strauch, G.E. Murch, J.M.F. Ferreira, On the mechanical properties of PLC–bioactive glass scaffolds fabricated via BioExtrusion. Mater. Sci. Eng. C 57, 288–293 (2015)

    Article  Google Scholar 

  23. N. Janes, E. Oldfield, Prediction of silicon-29 nuclear magnetic resonance chemical shifts using a group electronegativity approach: applications to silicate and aluminosilicate structures. J. Am. Chem. Soc. 107, 6769–6775 (1985)

    Article  Google Scholar 

  24. C. Martineau, V.K. Michaelis, S. Schiller, S. Kroeker, Liquid-liquid phase separation in model nuclear waste glasses: a solid state double resonance NMR study. Chem. Mater. 22, 4896–4903 (2010)

    Article  Google Scholar 

  25. G.N. Greaves, S.J. Gurman, C.R.A. Catlow, A.V. Chadwick, S. Houde-Walter, C.M.B. Henderson, B.R. Dobson, A structural basis for ionic diffusion in oxide glasses. Philo. Mag. A 64, 1059–1072 (1991)

    Article  ADS  Google Scholar 

  26. D.E. Day, J.E. White, R.F. Brown, K.D. McMenamin, Transformation of borate glasses into biologically useful materials. Glass Technol. Part A 44, 75–81 (2003)

    Google Scholar 

  27. D.E. Day, E.M. Erbe, M. Richard, J.A. Wojcik, Bioactive materials. US Patent No. 6709, 744 (2004)

  28. X. Han, D.E. Day, Reaction of sodium calcium borate glasses to form hydroxyapatite. J. Mater. Sci. Mater. Med. 18, 1837–1847 (2007)

    Article  Google Scholar 

  29. D. Zhao, W. Huang, M.N. Rahaman, D.E. Day, D.P. Wang, Mechanism for converting Al2O3-containing borate glass to hydroxyapatite in aqueous phosphate solution. Acta. Biomater. 5, 1265–1273 (2009)

    Article  Google Scholar 

  30. H.B. Pan, X.L. Zhao, X. Zhang, K.B. Zhang, L.C. Li, Z.Y. Li, W.M. Lam, W.W. Lu, D.P. Wang, W.H. Huang, K.L. Lin, J. Chang, Strontium borate glass: potential biomaterial for bone regeneration. J. R. Soc. Interface 7, 1025–1031 (2010)

    Article  Google Scholar 

  31. S. Sen, H. Maekawa, G.N. Papatheodorou, Short-range structure of invert glasses along the psudo-binary join MgSiO3–Mg2SiO4: Results from 29Si and 25Mg MAS NMR spectroscopy. J. Phys. Chem. B 113, 15243–15248 (2009)

    Article  Google Scholar 

  32. W.G. Dorfeld, Structural thermodynamics of alkali silicates glasses. Phys. Chem. Solids 29, 179–186 (1988)

    Google Scholar 

  33. H. Li, D.Q. You, C.R. Zhou, J.G. Ran, Study on machinable glass-ceramic containing fluorophlogopite for dental CAD/CAM system. J. Mater. Sci.: Mater. Med. 17, 1133–1137 (2006)

    Google Scholar 

  34. D.S. Brauer, M.N. Anjum, M. Mneimne, R.M. Wilson, H. Doweidar, R.G. Hill, Fluoride-containing bioactive glass-ceramics. J. Non-Cryst. Solids 358, 1438–1442 (2012)

    Article  ADS  Google Scholar 

  35. D. Shi, W. Xuejun, in Bioactive Ceramics: Structure, Synthesis and Mechanical Properties. ed. by D. Shi (Tsinghua University Press, Beijing, 2006), pp. 13–28

    Google Scholar 

  36. A.A. White, S.M. Best, I.A. Kinloch, Hydroxyapatite-carbon nanotube composites for biomedical applications: a review. Int. J. Appl. Ceram. Technol. 4, 1–13 (2007)

    Article  Google Scholar 

  37. L.L. Hench, J. Wilson, in Introduction. ed. by L.L. Hench, J. Wilson (World Scientific, Singapore, 1993), pp. 1–24

    Google Scholar 

  38. S.Y. Bhong, N. More, M. Choppadandi, G. Kapusetti, Review on carbon nanomaterials as typical candidates for orthopaedic coatings. SN Appl. Sci. 76, 1–16 (2019)

    Google Scholar 

  39. S.N. Habisreutinger, R.J. Nicholas, H.J. Snaith, Carbon nanotubes in perovskite solar cells. Adv. Energy Mater. 7, 1601839–1601845 (2017)

    Article  Google Scholar 

  40. S. Iijima, Carbon nanotubes: past, present and future. Phys. B 323, 1–5 (2002)

    Article  ADS  Google Scholar 

  41. D. Meng, S.N. Rath, N. Mordan, V. Salih, U. Kneser, A.R. Boccaccini, In vitro evaluation of 45S5 Bioglass VR-derived glass-ceramic scaffolds coated with carbon nanotubes. J. Biomed. Mater. Res. Part A 99, 435–444 (2011)

    Article  Google Scholar 

  42. M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2009)

    Article  Google Scholar 

  43. A. Fonseca-Garcia, J.D. Mota-Morales, I.A. Quintero-Ortega, Z.Y. Garcia-Carvajal, V. Martinez-Lopez, E. Ruvalcaba, C. Landa-Solis, L. Solis, C. Ibarra, M.C. Gutierrez, M. Terrones, I.C. Sanchez, F. del Monte, M.C. Velasquillo, G. Luna-Barcenas, Effect of doping in carbon nanotubes on the viability of biomimetic chitosan-carbon nanotubes-hydroxyapatite scaffolds. J. Biomed. Mater. Res. Part A 102, 3341–3351 (2013)

    Article  Google Scholar 

  44. S.M. Damaraju, Y. Shen, E. Elele, B. Khusid, A. Eshghinejad, J. Li, M. Jaffe, T.L. Arinzeh, Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. Biomaterials 149, 51–62 (2017)

    Article  Google Scholar 

  45. A. Muhulet, F. Miculescu, S.I. Voicu, F. Schütt, V.K. Thakur, Y.K. Mishra, Fundamentals and scopes of doped carbon nanotubes towards energy and biosensing applications. Mater. Today Energy 9, 154–186 (2018)

    Article  Google Scholar 

  46. L. Yang, L. Zhang, T.J. Webster, Carbon nanostructures for orthopedic medical applications. Nanomedicine 6, 1231–1244 (2011)

    Article  Google Scholar 

  47. Z. Peng, T. Zhao, Y. Zhou, S. Li, J. Li, R.M. Leblanc, Bone tissue engineering via carbon-based nanomaterials. Adv. Healthcare Mater. 9, 1901495–1901524 (2020)

    Article  Google Scholar 

  48. B. Huang, Carbon nanotubes and their polymeric composites: the applications in tissue engineering. Biomanuf. Rev. 5, 1–26 (2020)

    Article  Google Scholar 

  49. E. Zalnezhad, F. Musharavati, T. Chen, F. Jaber, K. Uzun, M.E.H. Chowdhury, A. Khandakar, J. Liu, S. Bae, Tribo-mechanical properties evaluation of HA/TiO2/CNT nanocomposite. Sci. Rep. 11, 1–14 (2021)

    Article  Google Scholar 

  50. A.A. Francis, S.A. Abdel-Gawad, M.A. Shoeib, Toward CNT-reinforced chitosan-based ceramic composite coatings on biodegradable magnesium for surgical implants. J. Coat. Technol. Res. 89, 1–18 (2021)

    Google Scholar 

  51. Y.H. Meng, C.Y. Tang, C.P. Tsui, P.S. Uskokovic, Fabrication and characterization of HA-ZrO2-MWCNT ceramic composites. J. Compos. Mater. 44, 871–882 (2010)

    Article  ADS  Google Scholar 

  52. D.C. Meng, J. Ioannou, A.R. Boccaccini, Bioglass-based scaffolds with carbon nanotube coating for bone tissue engineering. J. Mater. Sci-Mater. M. 20, 2139–2144 (2009)

    Article  Google Scholar 

  53. A.R. Boccaccini, F. Chicatun, J. Cho, O. Bretcanu, J.A. Roether, S. Novak, Q.Z. Chen, Carbon nanotube coatings on bioglass-based tissue engineering scaffolds. Adv. Funct. Mater. 17, 2815–2822 (2007)

    Article  Google Scholar 

  54. I. Armentano, M.M. Alvarez-Perez, B. Carmona-Rodriguez, I. Gutierrez-Ospina, J.M. Kenny, H. Arzate, Analysis of the biomineralization process on SWNT-COOH and F-SWNT films. Mater. Sci. Eng.: C 28, 1522–1529 (2008)

    Article  Google Scholar 

  55. L.P. Zanello, B. Zhao, H. Hu, R.C. Haddon, Bone cell proliferation on carbon nanotubes. Nano. Lett. 6, 562–567 (2006)

    Article  ADS  Google Scholar 

  56. D. Khang, G.E. Park, T.J. Webster, Enhanced chondrocyte densities on carbon nanotube composites: the combined role of nanosurface roughness and electrical stimulation. J. Biomed. Mater. Res. A 86, 253–260 (2008)

    Article  Google Scholar 

  57. Y. Xiao, T. Gong, S. Zhou, The functionalization of multi-walled carbon nanotubes by in situ deposition of hydroxyapatite. Biomaterials 31, 5182–5190 (2010)

    Article  Google Scholar 

  58. Y.-P. Guo, Y.-b Yao, C.-Q. Ning, L.-F. Chu, Y.-J. Guo, Fabrication of mesoporous carbonated hydroxyapatite/carbon nanotube composite coatings by microwave irradiation method. Mater. Lett. 65, 1007–1009 (2011)

    Article  Google Scholar 

  59. D.G. Grossman, Tetrasilicic mica Glass-ceramics, Patent No – 3839005 (1974)

  60. C.R. Gautam, C.W. Manpoong, S.S. Gautam, A.K. Singh, A. Madheshiya, Synthesis, microstructure and dielectric properties of (Sr, Bi) TiO3 borosilicate glass-ceramics. J. Ceram. Sci. Technol. 7, 79–86 (2016)

    Google Scholar 

  61. C.R. Gautam, S. Das, S.S. Gautam, A. Madheshiya, A.K. Singh, Processing and optical characterization of lead calcium titanate borosilicate glass doped with germanium. J. Phys. Chem. Solids 115, 180–186 (2018)

    Article  ADS  Google Scholar 

  62. L.S. Ravangave, G.N. Devde, Structure and physical properties of 59B2O3–10Na2O–(30–x)CdO–xZnO–1CuO (0 ≤ x ≤ 30) glass system. Adv. Glass Sci. Technol. 1, 21–38 (2018)

    Google Scholar 

  63. S.E. Arshad, W.E. Lee, P.F. James, Crystallization and microstructural evolution of commercial fluosilicate glass-ceramic. Glass Technol. 43C, 69–80 (2002)

    Google Scholar 

  64. A.K. Yadav, C.R. Gautam, Synthesis, structural and optical studies of barium strontium titanate borosilicate glasses doped with ferric oxide. Spect. Lett. 48, 514–520 (2015)

    Article  ADS  Google Scholar 

  65. G. Lamour, N. Journiac, S. Soues, S. Bonneau, P. Nassoy, A. Hamraoui, Influence of surface energy distribution on neuritogenesis. Colloids Surf. B 72, 208–218 (2009)

    Article  Google Scholar 

  66. P.S. Owuor, S. Hiremath, A.C. Chipara, R. Vajtai, J. Lou, D.R. Mahapatra, C.S. Tiwary, P.M. Ajayan, Nature inspired strategy to enhance mechanical properties via liquid reinforcement. Adv. Mater. Interfaces 4, 1700240–1700248 (2017)

    Article  Google Scholar 

  67. M.I. Ahamad, R. Prakash, A.A. John, Z. Wani, D. Yadav, D.U. Bawankule, S. Lugman, F. Khan, D. Singh, A. Gupta, Induced osteoblast differentiation by amide derivatives of stilbene: the possible osteogenic agents. Bioorg. Med. Chem. Lett. 30, 127138–127144 (2020)

    Article  Google Scholar 

  68. M. Dixit, A. Raghuvanshi, C.P. Gupta, J. Kureel, M.N. Mansoori, P. Shukla, A.A. John, K. Singh, D. Purohit, P. Awasthi, D. Singh, Medicarpin, a natural pterocarpan, heals cortical bone defect by activation of notch and Wnt canonical signaling pathways. PLoS ONE 10, e0144541–e0144556 (2015)

    Article  Google Scholar 

  69. R. Prakash, A.A. John, D. Singh, miR-409-5p negatively regulates Wnt/Beta catenin signaling pathway by targeting Lrp-8. J. Cell. Physiol. 234, 23507–23517 (2019)

    Article  Google Scholar 

  70. S. Das, A. Madheshiya, S.S. Gautam, C.R. Gautam, Fabrication and optical characterizations of lead calcium titanate borosilicate glasses. J. Non-Cryst. Solids 478, 16–22 (2017)

    Article  ADS  Google Scholar 

  71. SYu. Venyaminov, F.G. Prendergast, Water (H2O and D2O) molar absorptivity in the 1000–4000 cm1 range and quantitative infrared spectroscopy of aqueous solutions. Anal. Biochem. 248, 234–245 (1997)

    Article  Google Scholar 

  72. C.R. Gautam, A.K. Yadav, A.K. Singh, A review on infrared spectroscopy of borate glasses with effects of different additives. ISRN Ceram. 2012, 1–17 (2012)

    Article  Google Scholar 

  73. R.V. Adams, R.W. Douglas, Infra-red studies on various samples of fused silica with special reference to the bands due to water. J. Soc. Glass Technol. 43, 147–158 (1959)

    Google Scholar 

  74. H. Scholzelt, Glass: Nature, Structure and Properties (Springer, New York, 1991)

    Book  Google Scholar 

  75. C.R. Gautam, A.K. Yadav, V.K. Mishra, K. Vikram, Synthesis, IR and raman spectroscopic studies of (Ba, Sr)TiO3 borosilicate glasses with addition of La2O3. OJINM 2, 47–54 (2012)

    Article  Google Scholar 

  76. A. Venktaraman, V.A. Hiremath, S.K. Date, S.D. Kulkarni, A new combustion route to γ-Fe2O3 synthesis. Bull. Mater. Sci. 24, 617–621 (2001)

    Article  Google Scholar 

  77. V.K. Gupta, S. Agarwal, T.A. Saleh, Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J. Hazard. Mater. 185, 17–23 (2011)

    Article  Google Scholar 

  78. B. Hayati, A. Maleki, F. Najafi, F. Gharibi, G. McKay, V.K. Gupta, S.H. Puttaiah, N. Marzban, Heavy metal adsorption using PAMAM/CNT nanocomposite from aqueous solution in batch and continuous fixed bed systems. Chem. Eng. J. 346, 258–270 (2018)

    Article  Google Scholar 

  79. V. Kumar, N. Arora, O.P. Pandey, G. Kaur, FTIR and optical assessment of zinc doped calcium phospho-borosilicate sol-gel glasses/glass-ceramics. AIP Conf. Proc. 1675, 030061–030065 (2015)

    Article  Google Scholar 

  80. C. Liu, Q. Qi, D.S. Seregin, A.S. Vishnevskiy, Y. Wang, S. Wei, J. Zhang, K.A. Vorotilov, F.N. Dultsev, M.R. Baklanov, Effect of terminal methyl groups concentration on properties of organosilicate glass low dielectric constant films. Jpn. J. Appl. Phys. 57, 07MC01-07MC07 (2018)

    Article  Google Scholar 

  81. M.L. Krishnan, M.M. Neethish, V.V. Ravi Kanth Kumar, Structural and optical studies of rare earth-free bismuth silicate glasses for white light generation. J. Lumin. 201, 442–450 (2018)

    Article  Google Scholar 

  82. J. Partyka, M. Leśniak, Raman and infrared spectroscopy study on structure and microstructure of glass–ceramic materials from SiO2–Al2O3–Na2O–K2O–CaO system modified by variable molar ratio of SiO2/Al2O3. Spectrochim. Acta A Mol. Biomol. Spectrosc. 152, 82–91 (2016)

    Article  ADS  Google Scholar 

  83. M. Sitarz, The structure of simple silicate glasses in the light of middle infrared spectroscopy studies. J. Non-Cryst. Solids 357, 1603–1608 (2011)

    Article  ADS  Google Scholar 

  84. W. Mozgawa, M. Sitarz, M. Rokita, Spectroscopic study of different aluminosilicate structures. J. Mol. Struct. 511–512, 251–257 (1999)

    Article  ADS  Google Scholar 

  85. W. Mozgawa, M. Sitarz, Vibrational spectra of aluminosilicate ring strictures. J. Mol. Struct. 614, 273–279 (2002)

    Article  ADS  Google Scholar 

  86. C.R. Gautam, Synthesis and optical properties of SiO2–Al2O3–MgO–K2CO3–CaO–MgF2–La2O3 glasses. Bull. Mater. Sci. 39, 677–682 (2016)

    Article  Google Scholar 

  87. M.J. Pascual, A. Duran, M.O. Prado, A new method for determining fixed viscosity points of glasses. Phys. Chem. Glasses 46, 512–520 (2005)

    Google Scholar 

  88. S.K. Sharma, H.S. Yoder Jr., D.W. Matson, Raman study of some melilites in crystalline and glassy states. Geochim. Cosmochim. Acta 52, 1961–1967 (1988)

    Article  ADS  Google Scholar 

  89. M. Sitarz, W. Mozgawa, M. Handke, Vibrational spectra of complex ring silicate anions-method of recognition. J. Mol. Struct. 404, 193–197 (1997)

    Article  ADS  Google Scholar 

  90. M. Garai, N. Sasmal, A.R. Molla, S.P. Singh, A. Tarafder, B. Karmakar, Effects of nucleating agents on crystallization and microstructure of fluorophlogopite mica-containing glass–ceramics. J. Mater. Sci. 49, 1612–1623 (2014)

    Article  ADS  Google Scholar 

  91. Q. Zheng, Y. Liu, M. Li, Z. Liu, Y. Hu, X. Zhang, W. Deng, M. Wanga, Crystallization behavior and IR structure of yttrium aluminosilicate glasses. J. Eur. Ceram. Soc. 40, 463–471 (2020)

    Article  Google Scholar 

  92. O. Fesenko, G. Dovbeshko, A. Dementjev, R. Karpicz, T. Kaplas, Y. Svirko, Graphene-enhanced raman spectroscopy of thymine adsorbed on single-layer graphene. Nanoscale Res. Lett. 10, 1–7 (2015)

    Article  Google Scholar 

  93. A.K. Yadav, P. Singh, A review of structure of oxide glasses by raman spectroscopy. RSC Adv. 5, 67583–67609 (2015)

    Article  ADS  Google Scholar 

  94. K. Cheng, J. Wan, K. Liang, Crystallization of R2O–MgO–Al2O3–B2O3–SiO2–F (R=K+, Na+) glasses with different fluorine source. Mater. Lett. 47, 1–6 (2001)

    Article  Google Scholar 

  95. S. Petrescu, M. Constantinescu, E.M. Anghel, I. Atkinson, M. Olteanu, M. Zaharescu, Structural and physico-chemical characterization of some soda lime zinc alumino-silicate glasses. J. Non-Cryst. Solids 358, 3280–3288 (2012)

    Article  ADS  Google Scholar 

  96. F. Huang, H. Su, Y. Jing, Y. Li, Q. Lu, X. Tanga, Microwave dielectric properties of glass-free CaMg0.9xLi0.2ZnxSi2O6 ceramics for LTCC applications. Ceram. Int. 46, 18308–18314 (2020)

    Article  Google Scholar 

  97. B.G. Parkinson, D. Holland, M.E. Smith, C. Larson, J. Doerr, M. Affatigato, S.A. Feller, A.P. Howes, C.R. Scales, Quantitative measurement of Q(3) species in silicate and borosilicate glasses using Raman spectroscopy. J. Non-Cryst. Solids 354, 1936–1942 (2008)

    Article  ADS  Google Scholar 

  98. B.J. Saikia, G. Parthasarathy, R.R. Borah, Silicates in Kamargaon (L6) chondrite: a Raman spectroscopic study. Open Acc. J. Math Theor. Phy. 1, 225–230 (2018)

    Article  Google Scholar 

  99. K. Tashiro, M. Kobayashi, Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32, 1516–1526 (1991)

    Article  Google Scholar 

  100. K.A. Smith, R.J. Kirkpatrick, E. Oldfield, D.M. Henderson, High resolution Si NMR spectroscopic study of rock forming silicates. Am. Min. 68, 1206–1215 (1983)

    Google Scholar 

  101. M.D. Ingram, Ionic conductivity and glass structure. Philos. Mag. B 60, 729–740 (1989)

    Article  ADS  Google Scholar 

  102. D. Massiot, F. Fayan, M. Capron, I. King, S. Le Calve, B. Alonso, J.O. Durand, B. Bujoli, Z. Gan, G. Hoatson, Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 40, 70–76 (2002)

    Article  Google Scholar 

  103. J.F. Emerson, P.E. Stallworth, P.J. Bray, High-field 29Si NMR studies of alkali silicate glasses. J. Non Cryst. Solids 113, 253–259 (1989)

    Article  ADS  Google Scholar 

  104. P.J. Bray, NMR studies of the structures of glasses. J. Non Cryst. Solids 95, 45–60 (1987)

    Article  ADS  Google Scholar 

  105. A. Navrotsky, in Energetics of Silicate Melts. ed. by J.F. Stebbins, P.F. McMillan, D.B. Dingwell (Mineralogical Society of America, Washington, 1995), pp. 121–143

    Google Scholar 

  106. P.C. Hess, in Thermodynamic Mixing Properties and the Structure of Silicate Melts. ed. by J.F. Stebbins, P.F. McMillan, D.B. Dingwell (Mineralogical Society of America, Washington, 1995), pp. 145–190

    Google Scholar 

  107. M.C. Davis, K.J. Sanders, P.J. Grandinetti, S.J. Gaudio, S. Sen, Structural investigations of magnesium silicate glasses by 29Si 2D magic-angle flipping NMR. J. Non Cryst. Solids 357, 2787–2795 (2011)

    Article  ADS  Google Scholar 

  108. P. Zhang, P.J. Grandinetti, J.F. Stebbins, Anionic species determination in CaSiO3 glass using two-dimensional 29Si NMR. J. Phys. Chem. B 101, 4004–4008 (1997)

    Article  Google Scholar 

  109. N.K. Nasikas, T.G. Edwards, S. Sen, G.N. Papatheodorou, Structural Characteristics of Novel Ca–Mg orthosilicate and suborthosilicate glasses: results from 29Si and 17O NMR spectroscopy. J. Phys. Chem. B 116, 2696–2702 (2012)

    Article  Google Scholar 

  110. A. Madheshiya, C.R. Gautam, S. Kumar, Synthesis, structural and X-ray absorption spectroscopy of (PbxBi1-x)TiO3 borosilicate glass and glass ceramics. J. Asian Ceram. Soc. 5, 276–283 (2017)

    Article  Google Scholar 

  111. Y. Yuan, T.R. Lee, in Contact angle and wetting properties. ed. by G. Bracco, B. Holst (Springer, Berlin, 2013), pp. 3–34

    Google Scholar 

  112. C.R. Gautam, S. Kumar, S.K. Biradar, S. Jose, V.K. Mishra, Synthesis and enhanced mechanical properties of MgO substituted hydroxyapatite: a bone substitute material. RSC Adv. 6, 67565–67574 (2016)

    Article  ADS  Google Scholar 

  113. A. Gautam, C.R. Gautam, M. Mishra, V.K. Mishra, A. Hussain, S. Sahu, R. Nanda, B. Kisan, S.K. Biradar, R.K. Gautam, Enhanced mechanical properties of hBN–ZrO2 composites and their biological activities on Drosophila melanogaster: synthesis and characterization. RSC Adv. 9, 40977–40996 (2019)

    Article  ADS  Google Scholar 

  114. C.R. Gautam, A. Gautam, V.K. Mishra, N. Ahmad, R. Trivedi, S. Biradar, 3D interconnected architecture of h-BN reinforced ZrO2 composites: structural evolution and enhanced mechanical properties for bone implant applications. Ceram. Int. 45, 1037–1048 (2019)

    Article  Google Scholar 

  115. A.I. Aria, M. Gharib, Reversible tuning of the wettability of carbon nanotube arrays: the effect of ultraviolet/ozone and vacuum pyrolysis treatments. Langmuir 27, 9005–9011 (2011)

    Article  Google Scholar 

  116. P. Sahu, S.M. Ali, K.T. Shenoy, S. Mohan, Nanoscopic insights of saline water in carbon nanotube appended filters using molecular dynamics simulations. Phys. Chem. Chem. Phys. 21, 8529–8542 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Dr. C. R. Gautam is very grateful to UGC, New Delhi, India for providing the financial support under UGC Research Award No. F. 30-33/2011 (S.A.). Dr. Manasi Ghosh is indebted to Science and Engineering Research Board (SERB), Department of Science and Technology (DST), government of India (File no. EMR/2016/000249) and UGC-BSR (File no. 30-12/2014BSR) for financial support. And we are also thankful to the Sophisticated Instrumentation Centre (SIC) of Dr. Hari Singh Gour Central University for extending the solid-state NMR facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandkiram Gautam.

Ethics declarations

Conflict of interest

All the authors declare that they have no known competing financial interests that could have seemed to affect the work reported in this research paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shweta, Gautam, C., Dey, K.K. et al. Influence of carbon nanotubes reinforcement on the structural feature and bioactivity of SiO2–Al2O3–MgO–K2CO3–CaO–MgF2 bioglass. Appl. Phys. A 127, 545 (2021). https://doi.org/10.1007/s00339-021-04708-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04708-1

Keywords

Navigation