Skip to main content
Log in

Mechanical activation of metallic powders and reactivity of activated nanocomposites: a molecular dynamics approach

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work provides a description, at the atomic level, of a mechanical treatment on a mixture composed of two metallic powders. We used molecular dynamics to simulate the impact of grinding balls involving compaction and plastic deformation. Four binary mixtures were considered: Ni–Al, Ti–Al, Fe–Ni, and Fe–Cr, in order to assess the influence of the mechanical and structural properties of these pure elements on the characteristics of the activated mixture. The formation of nanometric mixing zones was tracked over deformation steps. The microstructure of the activated mixture was characterized using various indicators: local crystallographic configuration, radial distribution function, potential energy distribution, and mixing efficiency. The effects induced by the mechanical treatment were found to be specific for each binary system and depended on both the mechanical and structural properties of the pure elements. Mechanical activation induces solid-state solubility, structural transformations, and defects. We also evaluated reactivity and transport properties at different temperatures in Ni–Al and Ti–Al nanocomposites fabricated by mechanical activation. We assessed the extent of their mixing zones, together with solubility, mobility, and the formation of intermetallics within these zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Here, “particle” means powder particle.

References

  1. C. Suryanarayana, Mechanical alloying and milling. Prog. Mater. Sci. 46, 1–184 (2001). https://doi.org/10.1016/S0079-6425(99)00010-9

    Article  Google Scholar 

  2. P. Balaz, M. Achimovicova, M. Balaz, P. Billik, Z. Cherkezova-Zheleva, J.M. Criado et al., Hallmarks of mechanochemistry: from nanoparticles to technology. Chem. Soc. Rev. 42, 7571–7637 (2013). https://doi.org/10.1039/c3cs35468g

    Article  Google Scholar 

  3. A.S. Rogachev, Mechanical activation of heterogeneous exothermic reactions in powder mixtures. Russ. Chem. Rev. 88, 875–900 (2019). https://doi.org/10.1070/RCR4884

    Article  ADS  Google Scholar 

  4. S. Paris, E. Gaffet, F. Bernard, Z.A. Munir, Spark plasma synthesis from mechanically activated powders: a versatile route for producing dense nanostructured iron aluminides. Scr. Mater. 50, 691–696 (2004). https://doi.org/10.1016/j.scriptamat.2003.11.019

    Article  Google Scholar 

  5. A. Fourmont, S. Le Gallet, O. Politano, C. Desgranges, F. Baras, Effects of planetary ball milling on AlCoCrFeNi high entropy alloys prepared by Spark Plasma Sintering: Experiments and molecular dynamics study. J. Alloys Compd. 820, 153448 (2020). https://doi.org/10.1016/j.jallcom.2019.153448

    Article  Google Scholar 

  6. A.A. Nepapushev, D.O. Moskovskikh, V.S. Buinevich, S.G. Vadchenko, A.S. Rogachev, Production of rounded reactive composite Ti/Al powders for selective laser melting by high-energy ball milling. Metall. Mater. Trans B. 50, 1241–1247 (2019). https://doi.org/10.1007/s11663-019-01553-9

    Article  Google Scholar 

  7. Q. Nguyen, C. Huang, M. Schoenitz, K.T. Sullivan, E.L. Dreizin, Nanocomposite thermite powders with improved flowability prepared by mechanical milling. Powder Technol. 327, 368–380 (2018). https://doi.org/10.1016/j.powtec.2017.12.082

    Article  Google Scholar 

  8. S. Beinert, G. Fragnière, C. Schilde, A. Kwade, Analysis and modelling of bead contacts in wet-operating stirred media and planetary ball mills with CFD-DEM simulations. Chem. Eng. Sci. 134, 648–662 (2015). https://doi.org/10.1016/j.ces.2015.05.063

    Article  Google Scholar 

  9. S. Rosenkranz, S. Breitung-Faes, A. Kwade, Experimental investigations and modelling of the ball motion in planetary ball mills. Powder Technol. 212, 224–230 (2011). https://doi.org/10.1016/j.powtec.2011.05.021

    Article  Google Scholar 

  10. C.F. Burmeister, A. Kwade, Process engineering with planetary ball mills. Chem. Soc. Rev. 42, 7660–7667 (2013). https://doi.org/10.1039/c3cs35455e

    Article  Google Scholar 

  11. A.S. Rogachev, D.O. Moskovskikh, A.A. Nepapushev, T.A. Sviridova, S.G. Vadchenko, S.A. Rogachev, A.S. Mukasyan, Experimental investigation of milling regimes in planetary ball mill and their influence on structure and reactivity of gasless powder exothermic mixtures. Powder Technol. 274, 44–52 (2015). https://doi.org/10.1016/j.powtec.2015.01.009

    Article  Google Scholar 

  12. U. Hoffmann, C. Horst, E. Kunz, Reactive comminution, in Integrated Chemical Processes. ed. by K. Sundmacher, A. Keinle, A. Seidel-Morgenstern (Wiley, Hoboken, 2005), pp. 407–436. https://doi.org/10.1002/3527605738.ch14

    Chapter  Google Scholar 

  13. B.B. Khina, Effect of mechanical activation on SHS: Physicochemical mechanism. Int. J Self-Propag. High-Temp. Synth. 17, 211–217 (2008). https://doi.org/10.3103/S1061386208040018

    Article  Google Scholar 

  14. A.S. Mukasyan, B.B. Khina, R.V. Reeves, S.F. Son, Mechanical activation and gasless explosion: nanostructural aspects. Chem. Eng. J. 174, 677–686 (2011). https://doi.org/10.1016/j.cej.2011.09.028

    Article  Google Scholar 

  15. A.S. Rogachev, N.F. Shkodich, S.G. Vadchenko, F. Baras, R. Chassagnon, N.V. Sachkova et al., Reactivity of mechanically activated powder blends: Role of micro and nano structures. Int. J Self-Propag. High-Temp. Synth. 22, 210–216 (2013). https://doi.org/10.3103/S1061386213040067

    Article  Google Scholar 

  16. A.S. Rogachev, N.F. Shkodich, S.G. Vadchenko, F. Baras, D.Y. Kovalev, S. Rouvimov, A.A. Napapushev, A.S. Mukasyan, Influence of the high-energy ball milling on structure and reactivity of the Ni+Al powder mixture. J. Alloy. Compd. 577, 600–605 (2013). https://doi.org/10.1016/j.jallcom.2013.06.114

    Article  Google Scholar 

  17. C.E. Shuck, A.S. Mukasyan, Reactive Ni/Al nanocomposites: structural characteristics and activation energy. J. Phys. Chem. A 121, 1175–1181 (2017). https://doi.org/10.1021/acs.jpca.6b12314

    Article  Google Scholar 

  18. S. Odunuga, Y. Li, P. Krasnochtchekov, P. Bellon, R.S. Averback, Forced chemical mixing in alloys driven by plastic deformation. Phys. Rev. Lett. 95, 045901 (2005). https://doi.org/10.1103/PhysRevLett.95.045901

    Article  ADS  Google Scholar 

  19. F. Delogu, Forced chemical mixing in model immiscible systems under plastic deformation. J. Appl. Phys. 104, 073533 (2008). https://doi.org/10.1063/1.2987476

    Article  ADS  Google Scholar 

  20. A.C. Lund, C.A. Schuh, Molecular simulation of amorphization by mechanical alloying. Acta Mater. 52, 2123–2132 (2004). https://doi.org/10.1016/j.actamat.2004.01.004

    Article  ADS  Google Scholar 

  21. J.E. Hammerberg, B.L. Holian and S.J. Zhou, Studies of sliding friction in compressed copper, in Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. AIP Conference Proceedings vol. 370, pp. 307–311 (1996). https://doi.org/10.1063/1.50796

  22. D.A. Rigney, S. Karthikeyan, The evolution of tribomaterial during sliding: a brief introduction. Tribol. Lett. 39, 3–7 (2010). https://doi.org/10.1007/s11249-009-9498-3

    Article  Google Scholar 

  23. N.Q. Vo, J. Zhou, Y. Ashkenazy, D. Schwen, R.S. Averback, P. Bellon, Atomic mixing in metals under shear deformation. JOM 65, 382–389 (2013). https://doi.org/10.1007/s11837-012-0542-7

    Article  Google Scholar 

  24. E.-Q. Lin, L.-S. Niu, H.-J. Shi, Z. Duan, Molecular dynamics simulation of nano-scale interfacial friction characteristic for different tribopair systems. Appl. Surf. Sci. 258, 2022–2028 (2012). https://doi.org/10.1016/j.apsusc.2011.04.117

    Article  ADS  Google Scholar 

  25. K. Chen, L. Wang, Y. Chen, Q. Wang, Molecular dynamics simulation of microstructure evolution and heat dissipation of nanoscale friction. Int. J. Heat Mass Transf. 109, 293–301 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.105

    Article  Google Scholar 

  26. M.J. Cherukara, T.C. Germann, E.M. Kober, A. Strachan, Mechanics of Loading, Shock loading of granular Ni/Al composites. Part 1. J. Phys. Chem. C 118, 26377–26386 (2014). https://doi.org/10.1021/jp507795w

    Article  Google Scholar 

  27. M.J. Cherukara, T.C. Germann, E.M. Kober, A. Strachan, Shock loading of granular Ni/Al composites. Part 2. Phys. Chem. C. 120, 6804–6813 (2016). https://doi.org/10.1021/acs.jpcc.5b11528

    Article  Google Scholar 

  28. K.V. Manukyan, B.A. Mason, L.J. Groven, Y.-C. Lin, M. Cherukara, S.F. Son, A. Strachan, A.S. Mukasyan, Tailored reactivity of Ni+Al nanocomposites: microstructural correlations. J. Phys. Chem. C 116, 21027–21038 (2012). https://doi.org/10.1021/jp303407e

    Article  Google Scholar 

  29. A. Fourmont, O. Politano, S. Le Gallet, C. Desgranges, F. Baras, Reactivity of Ni-Al nanocomposites prepared by mechanical activation: a molecular dynamics study. J. Appl. Phys. 129, 065301 (2021). https://doi.org/10.1063/5.0037397

    Article  ADS  Google Scholar 

  30. D.R. Maurice, T.H. Courtney, The physics of mechanical alloying: a first report. Metall. Mat. Trans. A. 21, 289–303 (1990). https://doi.org/10.1007/BF02782409

    Article  ADS  Google Scholar 

  31. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  ADS  MATH  Google Scholar 

  32. A. Perron, S. Garruchet, O. Politano, G. Aral, V. Vignal, Oxydation of nanocrystalline aluminum by variable charge molecular dynamics. J. Phys. Chem. Solids 71, 119–124 (2010). https://doi.org/10.1016/j.jpcs.2009.09.008

    Article  ADS  Google Scholar 

  33. O. Politano, F. Baras, Reaction front propagation in nanocrystalline Ni/Al composites: a molecular dynamics study. J. Appl. Phys. 128, 215301 (2020). https://doi.org/10.1063/5.0028054

    Article  ADS  Google Scholar 

  34. G.P. Purja-Pun, Y. Mishin, Development of an interatomic potential for the Ni–Al system. Philos. Mag. 89, 3245–3267 (2009). https://doi.org/10.1080/14786430903258184

    Article  ADS  Google Scholar 

  35. R.R. Zope, Y. Mishin, Interatomic potentials for atomistic simulations of the Ti–Al system. Phys. Rev. B 68, 024102 (2003). https://doi.org/10.1103/PhysRevB.68.024102

    Article  ADS  Google Scholar 

  36. G. Bonny, R.C. Pasianot, L. Malerba, Fe–Ni many-body potential for metallurgical applications. Model. Simul. Mat. Sci. Eng. 17, 025010 (2009). https://doi.org/10.1088/0965-0393/17/2/025010

    Article  ADS  Google Scholar 

  37. G. Bonny, R.C. Pasianot, D. Terentyev, L. Malerba, Iron chromium potential to model high-chromium ferritic alloys. Philos. Mag. 91, 1724–1746 (2011). https://doi.org/10.1080/14786435.2010.545780

    Article  ADS  Google Scholar 

  38. F. Delogu, G. Cocco, Numerical simulations of structural modifications at a Ni–Zr sliding interface. Phys. Rev. B. 72, 014124 (2005). https://doi.org/10.1103/PhysRevB.72.014124

    Article  ADS  Google Scholar 

  39. P. Zhang, S.X. Li, Z.F. Zhang, General relationship between strength and hardness. Mat. Sci. Eng. A. 529, 62–73 (2011). https://doi.org/10.1016/j.msea.2011.08.061

    Article  Google Scholar 

  40. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010). https://doi.org/10.1088/0965-0393/18/1/015012

    Article  ADS  Google Scholar 

  41. A. Stukowski, Structure identification methods for atomistic simulations of crystalline materials. Model. Simul. Mater. Sci. Eng. 20, 045021–16 (2012). https://doi.org/10.1088/0965-0393/20/4/045021

    Article  ADS  Google Scholar 

  42. A. Stukowski, Dislocation analysis tool for atomistic simulations, in Handbook of Materials Modeling. ed. by W. Andreoni, S. Yip (Springer, Cham, 2018). https://doi.org/10.1007/978-3-319-44677-6_20

    Chapter  Google Scholar 

  43. O. Politano, A. Fourmont, S. Le Gallet, F. Baras, A. A. Nepapushev, A. S. Sedegov, S. G. Vadchenko and A. S. Rogachev, Mechanical activation of metallic powders in planetary ball mills: multi-scale modeling and experimental observation, in IOP Conference Series: Materials Science and Engineering, vol. 558, pp. 012034 (2019). https://doi.org/10.1088/1757-899X/558/1/012034

  44. A.C. Lund, C.A. Schuh, Topological and chemical arrangement of binary alloys during severe deformation. J. Appl. Phys. 95, 4815–4822 (2004). https://doi.org/10.1063/1.1691481

    Article  ADS  Google Scholar 

  45. R. Banerjee, R. Ahuja, H.L. Fraser, Dimensionally Induced Structural transformations in Titanium-Aluminum Multilayers. Phys. Rev. Lett. 76, 3778 (1996). https://doi.org/10.1103/PhysRevLett.76.3778

    Article  ADS  Google Scholar 

  46. S.K. Maurya, J.F. Nie, A. Alankar, Atomistic analyses of HCP-FCC transformation and reorientation of Ti in Al–Ti multilayers. Comput. Mater. Sci. 192, 110329 (2021). https://doi.org/10.1016/j.commatsci.2021.110329

    Article  Google Scholar 

  47. Q. Bizot, O. Politano, A.A. Nepapushev, S.G. Vadchenko, A.S. Rogachev, F. Baras, Reactivity of the Ti–Al system: Experimental study and molecular dynamics simulations. J. Appl. Phys. 127, 145304 (2020). https://doi.org/10.1063/5.0004550

    Article  ADS  Google Scholar 

  48. K.M. Hamdia and T. Rabczuk, Key Parameters for fracture toughness of particle/polymer nanocomposites; sensitivity analysis via XFEM modeling approach, in Proceedings of the 7th International Conference on Fracture Fatigue and Wear, FFW 2018, ed. by M. Abdel Wahab. Lecture Notes in Mechanical Engineering. (Springer, Singapore) pp. 41–51 (2019). https://doi.org/10.1007/978-981-13-0411-8_4

Download references

Acknowledgements

The use of computational facilities at the Computing Center of the University of Bourgogne, PSIUN-CCUB, is gratefully acknowledged (Mesochallenge Project). Part of this work was performed using HCP resources from GENCI-CINES (Grant 2020-A0090912032). This work has been supported by the EIPHI Graduate School (Contract ANR-17-EURE-0002). The authors thank Carmela Chateau-Smith for the careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Politano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baras, F., Bizot, Q., Fourmont, A. et al. Mechanical activation of metallic powders and reactivity of activated nanocomposites: a molecular dynamics approach. Appl. Phys. A 127, 555 (2021). https://doi.org/10.1007/s00339-021-04700-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04700-9

Keywords

Navigation