Skip to main content
Log in

The Evolution of Tribomaterial During Sliding: A Brief Introduction

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This brief introductory article summarizes key findings from experiments and from computer simulations concerning the dramatic changes that commonly occur adjacent to sliding interfaces. We conclude that a wide range of observed features depends on a few basic processes (plastic deformation, interactions with the environment (including the counterface) and mechanical mixing) and that sliding leads to flow patterns similar to those expected in fluid flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Berthier, Y.: Maurice Godet’s third body. In: Dowson, D., Taylor, C.M., Childs, T.H.C., Dalmaz, G., Berthier, Y., Flamand, L., Georges, J.-M., Lubrecht, A.A. (eds.) The Third Body Concept: Interpretation of Tribological Phenomena, Proceedings of 22nd Leeds-Lyon Symposium on Tribology. Elsevier, Amsterdam (1996)

  2. Rigney, D.A., Chen, L.H., Naylor, M.G.S., Rosenfield, A.R.: Wear processes in sliding systems. Wear 100, 195–219 (1984)

    Article  CAS  Google Scholar 

  3. Rigney, D.A.: Transfer, mixing and associated chemical and mechanical processes during the sliding of ductile materials. Wear 245, 1–9 (2000)

    Article  CAS  Google Scholar 

  4. Hammerberg, J.E., Holian, B.L., Zhou, S.J.: Studies of sliding friction in compressed copper. In: AIP Conference Proceedings, Seattle, Washington, 13–18 August 1995, vol. 370, p. 307 (1996)

  5. Hammerberg, J.E., Holian, B.L., Röder, J., Bishop, A.R., Zhou, S.J.: Nonlinear dynamics and the problem of slip at material interfaces. Physica D123, 330–340 (1998)

    ADS  Google Scholar 

  6. Rigney, D.A., Hammerberg, J.E.: Unlubricated sliding behavior of metals. MRS Bull. 23(6), 32–36 (1998)

    CAS  Google Scholar 

  7. Fu, X.Y., Falk, M.L., Rigney, D.A.: Sliding behavior of metallic glass. Part II. Computer simulations. Wear 250, 420–430 (2001)

    Article  Google Scholar 

  8. Rigney, D.A., Fu, X.Y., Hammerberg, J.E., Holian, B.L., Falk, M.L.: Examples of structural evolution during sliding and shear of ductile materials. Scr. Mater. 49, 977–983 (2003)

    Article  CAS  Google Scholar 

  9. Subramanian, K., Wu, J.-H., Rigney, D.A.: The role of vorticity in the formation of tribomaterial during sliding. In: Materials Research Society Proceedings, San Francisco, CA, 13–16 April 2004, vol. 821, pp. 9.6.1–9.6.6 (2004)

  10. Wu, H.H., Karthikeyan, S., Falk, M.L., Rigney, D.A.: Tribological characteristics of diamond-like carbon (DLC) based nanocomposites coatings. Wear 259, 744–751 (2005)

    Article  CAS  Google Scholar 

  11. Kim, H. J., Emge, A., Subramanian, K., Rigney, D.: An experimental and theoretical study of microstructure evolution during sliding. In: Rohrer, G.S., Karma, A.S., Wynblatt, P.P., Rollett, A.D., Srolovitz, D.J., Farkas, D., Chatain, D., Woodward, C.F. (eds.) Symposium on Integration of Theoretical, Computational and Experimental Studies of Interfaces and Microstructural Evolution. Materials Science and Technology 2005. ASM, ACerS, AIST, AWS, TMS, Pittsburgh, PA (2005)

  12. Karthikeyan, S., Kim, H.J., Rigney, D.A.: Velocity and strain-rate profiles in materials subjected to unlubricated sliding. Phys. Rev. Lett. 95, 1–4 (2005)

    Article  Google Scholar 

  13. Kim, H.J., Windl, W., Rigney, D.A.: Structure and chemical analysis of aluminum wear debris: experiments and ab initio simulations. Acta Mater. 55, 6489–6498 (2007)

    Article  CAS  Google Scholar 

  14. Kim, H.J., Kim, W.K., Falk, M.J., Rigney, D.A.: MD simulations of microstructure evolution during high-velocity sliding between crystalline materials. Tribol. Lett. 28, 299–306 (2007)

    Article  Google Scholar 

  15. Kim, H.J., Karthikeyan, S., Rigney, D.: A simulation study of the mixing, atomic flow and velocity profiles of crystalline materials during sliding. Wear 267, 1130–1136 (2009)

    Article  CAS  Google Scholar 

  16. Karthikeyan, S., Agrawal, A., Rigney, D.A.: Molecular dynamics sliding simulations in an Fe-Cu Tribopair System. Wear 267, 1166–1176 (2009)

    Article  CAS  Google Scholar 

  17. Samuels, L.E.: Metallographic Polishing by Mechanical Methods, 3rd edn. American Society for Metals, Metals Park, OH (1982)

    Google Scholar 

  18. Bellon, P., Averback, R.S.: Peface to viewpoint set on: materials under driving forces. In Viewpoint Set No. 32. Scr. Mater. 49, 921–925 (2003)

    Article  CAS  Google Scholar 

  19. Rabinowicz, E.: Friction and Wear of Materials. Wiley, New York (1965)

    Google Scholar 

  20. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids, Part II. Clarendon Press, Oxford (1964)

    Google Scholar 

  21. Kelvin, W.: Hydrokinetic solutions and observations. Philos. Mag. 42, 362–377 (1871)

    Google Scholar 

  22. Von Helmholtz, H.L.F.: On discontinuous movements of fluids. Philos. Mag. 36, 337–346 (1868)

    Google Scholar 

  23. Mazuyer, D., Georges, J.M., Cambou, B.: Shear behavior of an amorphous film with bubble soap raft model. J. Phys. France 49, 1057–1067 (1989)

    Article  Google Scholar 

  24. Little, T.A., Holcombe, R.J., Ilg, B.R.: Ductile fabrics in the zone of active oblique convergence near the alpine fault, New Zealand: identifying the neotectonic overprint. J. Struct. Geol. 24, 193–217 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are pleased to acknowledge the contributions of J.E. Hammerberg (Los Alamos National Laboratory), M.L. Falk (University of Michigan and Johns Hopkins University, W.K. Kim (University of Michigan), W. Windl (Materials Science and Engineering (MSE), The Ohio State University (OSU)) and recent members of the tribology research group in MSE at OSU, especially X.Y. Fu, T. Kasai, J.H. Wu, H.J. Kim and A. Emge. We are also grateful to the following research sponsors: The National Science Foundation (NSF), U. S. Civilian Research and Development Foundation (CRDF), Dayton Area Graduate Studies Institute (DAGSI), U. S. Department of Energy (DOE/NNSA/SSAA), Los Alamos National Laboratory, Ohio Supercomputer Center and the Michigan Center for Parallel Computing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Rigney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rigney, D.A., Karthikeyan, S. The Evolution of Tribomaterial During Sliding: A Brief Introduction. Tribol Lett 39, 3–7 (2010). https://doi.org/10.1007/s11249-009-9498-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9498-3

Keywords

Navigation