Skip to main content
Log in

The physics of mechanical alloying: A first report

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

In this paper, we present a first attempt to define the basic geometry, mechanics, and physics of the process of mechanical alloying. The geometry of the collision events which lead to particle fragmentation and coalescence is modeled on the basis of Hertzian contacts between the grinding media which entrap a certain amount of material volume between the impacting surfaces. This geometry essentially defines the volume of material affected per collision, and from this information and characteristics of the specific mill and the material being processed, impact times, powder strain rates and strains, powder temperature increase, powder cooling times, and milling times can be approximated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

deceleration of particle due to factional drag

A :

particle surface area

C p :

specific heat

C R :

charge ratio (mass of grinding balls/mass of powder)

D m :

diameter of SPEX mill

E :

Young’s modulus

E eff :

effective Young’s modulus of impacting media having different Young’s moduli

f :

fluid mechanics friction factor

f p :

fractional powder volume (powder volume/ (mill volume - tool volume))

F D :

fluid mechanics factional drag force

g :

gravitational constant

g p :

geometrical constant relative to pressure developed in a Hertzian collision

g r :

geometrical constant relative to Hertzian radius

g T :

geometrical constant relative to collision time

h :

height of powder cylinder impacted during collision

h o :

initial height of powder cylinder impacted during collision

h t :

heat transfer coefficient

h f :

height of fluid above reference line as a result of rotational velocity

k :

thermal conductivity of powder

K :

coefficient in constitutive plasticity equation for powder aggregate

l :

interlamellar thickness in powder particle

l o :

initial interlamellar thickness in powder particle

L :

length of SPEX mill

m :

mass of colliding grinding media

n :

strain-hardening coefficient of powder aggregate

n B :

number of balls in SPEX mill

n c :

number of powder collision events

Nu:

Nusselt number

p :

pressure

p max :

maximum pressure generated in a Hertzian collision

Pr:

Prandtl number

r :

effective powder particle radius

r d :

radius of horizontal ball mill

r h :

Hertz radius

r o :

radius of attritor

R :

radius of grinding balls

R1,2 :

radii of curvature of impacting spherical bodies

R o :

distance from center of attritor tank

Re:

Reynolds number

t :

time

t o :

time between powder particle collisions

t cb :

time between grinding media collisions

t f :

time for completion of mechanical alloying

t p :

processing time

T :

temperature

T a :

ambient mill temperature

T b :

bulk temperature of powder particles

Ts :

postimpact temperature of powder particles (=T a +ΔT)

T s :

surface temperature of powder particles

u :

relative velocity of two contacting particles

u p :

plastic work per unit volume on powder during impaction

U E :

elastic strain energy associated with a Hertzian collision

U p :

plastic work on powder during impaction

v :

precollision relative velocity of impacting media

v:

instantaneous relative velocity of impacting media

v a :

ball velocity in attritor

U air :

air velocity in SPEX mill

v g :

ball velocity component due to gravity in a horizontal ball mill

u t :

transverse velocity component of ball in a horizontal ball mill

V :

particle volume

V B :

total ball volume in mill

V c :

powder volume impacted during collision

V M :

mill volume

V p :

total powder volume in mill

Vs :

sound velocity

V s :

volume swept by grinding balls between collisions

V :

bulk stream velocity

x :

distance

y :

vertical drop distance of ball in horizontal ball mill

α:

thermal diffusivity

β =−R 2/R :

whereR 2 is magnitude of radius of curvature of impacted surface

γ:

proportionality constant

δ :

(linear) measure of deformation of impacting media

δmax :

maximum center of mass displacement in a Hertz collision

ε:

powder strain during collision

εmax :

maximum powder strain per collision

ε:

powder strain rate during collision

E:

accumulated strain during mechanical alloying

Ef :

critical accumulated strain for alloying completion

η:

viscosity

μ :

coefficient of friction

p :

density

σ :

stress experienced by powder during collision

σ o :

coefficient in plasticity constitutive equation of powder aggregate

τ:

half-duration of impact during Hertzian collision

v :

Poisson’s ratio

ϕ :

proportionality constant

ω :

angular velocity of attritor or ball mill

References

  1. J.S. Benjamin:Metall. Trans., 1970, vol. 1, pp. 2943–51.

    CAS  Google Scholar 

  2. P.S. Gilman and W.D. Nix:Metall. Trans. A, 1981, vol. 12A, pp. 813–24.

    Google Scholar 

  3. R.C. Benn, J.S. Benjamin, and C.M. Adam:High Temperature Alloys: Theory and Design, J.O. Steigler, ed., TMS-AIME, Warrendale, PA, 1984, pp. 419–27.

    Google Scholar 

  4. G. Jangg, F. Kutner, and G. Korb:Powder Metall. Int., 1977, vol. 9, pp. 24–32.

    CAS  Google Scholar 

  5. J.S. Benjamin and R.D. Schelleng:Metall. Trans. A, 1981, vol. 12A, pp. 1827–32.

    Google Scholar 

  6. J.S. Benjamin and M.J. Bomford:Metall. Trans. A, 1977, vol. 8A, pp. 1301–05.

    CAS  Google Scholar 

  7. R.L. Cairns, L.R. Curwick, and J.S. Benjamin:Metall. Trans. A, 1975, vol. 6A, pp. 179–87.

    Google Scholar 

  8. R.C. Benn, L.R. Curwick, and G.A. Hack:J. Powder Metall., 1981, vol. 4, pp. 191–204.

    Google Scholar 

  9. Gemot H. Gessinger:Metall. Trans. A, 1976, vol. 7A, pp. 1203–09.

    CAS  Google Scholar 

  10. R.F. Singer and G.H. Gessinger:Metall. Trans. A, 1982, vol. 13A, pp. 1463–70.

    Google Scholar 

  11. F.G. Wilson, B.R. Knott, and C.D. Desforges:Metall. Trans. A, 1978, vol. 9A, pp. 275–82.

    CAS  Google Scholar 

  12. W. Vendermeulen and L. Coheur:Powder Metall., 1981, vol. 24, pp. 145–49.

    Google Scholar 

  13. R.F. Singer, W.C. Oliver, and W.D. Nix:Metall. Trans. A, 1980, vol. 11A, pp. 1895–901.

    CAS  Google Scholar 

  14. W.C. Oliver and W.D. Nix:Ada Metall., 1982, vol. 30, pp. 1335–47.

    Article  Google Scholar 

  15. Y.W. Kim and L.R. Bidwell:Scripta Metall., 1981, vol. 15, pp. 483–86.

    Article  CAS  Google Scholar 

  16. J.S. Benjamin and T.E. Volin:Metall. Trans., 1974, vol. 5, pp. 1929–34.

    Article  CAS  Google Scholar 

  17. P.S. Gilman and J.S. Benjamin:Annu. Rev. Mater. Sci., 1983, vol. 13, pp. 279–300.

    Article  CAS  Google Scholar 

  18. M.A. Gedwell, T.K. Glasgow, and R.S. Levine:Metallurgical Coatings, Elsevier Sequoia, New York, NY, 1982, vol. 1.

    Google Scholar 

  19. R.M. Davis, B. McDermott, and C.C. Koch:Metall. Trans. A, 1988, vol. 19A, pp. 2867–74.

    CAS  Google Scholar 

  20. E.H. Love:A Treatise on the Mathematical Theory of Elasticity, 4th ed., Dover, New York, NY, 1944, pp. 193–200.

    Google Scholar 

  21. S.P. Timoshenko and J.N. Goodier:Theory of Elasticity, McGraw-Hill, New York, NY, 1970, pp. 409–22.

    Google Scholar 

  22. T.H. Courtney: University of Virginia, Charlottesville, VA, un published research, 1989.

  23. R.B. Schwarz and C.C. Koch:Appl. Phys. Lett., 1987, vol. 50, pp. 1578–87.

    Article  Google Scholar 

  24. S.C. Lim and M.F. Ashby:Acta Metall., 1987, vol. 35, pp. 1–24.

    Article  CAS  Google Scholar 

  25. T.H. Courtney:Proc. Int. Conf. Solid-Solid Phase Transformations, H.I. Aaronson, D.E. Laughlin, R.F. Sekerka, and C.M. Wayman, eds., TMS-AIME, New York, NY, 1982, pp. 1057–76.

    Google Scholar 

  26. D.R. Maurice: M.S. Thesis, University of Virginia, Charlottesville, VA, 1988.

    Google Scholar 

  27. J.J. DeBarbadillo and J.H. Weber: Inco Alloys International, Huntington, WV, private communication, 1988.

  28. P.S. Follansbee and U.F. Kocks:Acta Metall., 1988, vol. 36, pp. 81–93.

    Article  Google Scholar 

  29. T.H. Courtney, J.C. Malzahn Kampe, J.K. Lee, and D.R. Maurice:Symp. on Diffusional Analysis and Applications, TMS-AIME, Warrendale, PA, pp. 225–48.

  30. V.L. Streeter:Fluid Mechanics, McGraw-Hill, New York, NY, 1951, p. 25.

    Google Scholar 

  31. G.H. Geiger and D.R. Poirier:Transport Phenomena in Metallurgy, Addison-Wesley, Reading, MA, 1973, p. 249.

    Google Scholar 

  32. K.K. Kelley:Contributions to the Data on Theoretical Metallurgy: Vol. X, High Temperature Heat Content, Heat Capacity, and Entropy Data for Inorganic Compounds, United States Government Printing Office, Washington, DC, 1949, p. 476.

    Google Scholar 

  33. P.D. Funkenbusch, J.K. Lee, and T.H. Courtney:Metall. Trans. A, 1987, vol. 18A, pp. 1249–56.

    CAS  Google Scholar 

  34. J.P. Page: M.S. Thesis, University of Tennessee, Knoxville, TN, 1957.

    Google Scholar 

  35. Metals Handbook, 9th ed., ASM, Metals Park, OH, 1979, vol. 2.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurice, D.R., Courtney, T.H. The physics of mechanical alloying: A first report. Metall Trans A 21, 289–303 (1990). https://doi.org/10.1007/BF02782409

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02782409

Keywords

Navigation