Skip to main content
Log in

Plasmon-enhanced upconversion luminescence of the composite films through tunable ZnO spacer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Surface plasmon effects of Ag nanoparticles (NPs) have been extensively applied to enhance upconversion luminescence (UCL) properties of the nanoparticles doped with rare earth ions. However, it is important to control the effective coupling distance between the Ag NPs and the upconversion nanoparticles (UCNPs). In this work, the Ag/ZnO/UC composite films were fabricated by vacuum methods, and the influence of the ZnO spacer layer thickness on spectral properties was investigated. These studies reveal that the ZnO spacer thickness has a strong effect on the Ag NPs plasma resonance and UCL intensity. The highest enhancement factors of the red and green emissions were found to be 18.6 and 5.3 under 980 nm excitation, respectively. That is attributed to the enhancement of the absorption and excitation rate for UCNPs under the equilibrium between non-radiative energy and local field effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Li, X. Wang, X. Li, S. Zeng, G. Chen, Clearable shortwave-infrared-emitting NaErF4 nanoparticles for noninvasive dynamic vascular imaging. Chem. Mater. 32(8), 3365–3375 (2020)

    Article  Google Scholar 

  2. W. Bi, Y. Wu, C. Chen, D. Zhou, Z. Song, D. Li, G. Chen, Q. Dai, Y. Zhu, H. Song, Dye sensitization and local surface plasmon resonance-enhanced upconversion luminescence for efficient perovskite solar cells. ACS Appl. Mater. Interfaces. 12(22), 24737–24746 (2020)

    Article  Google Scholar 

  3. F. Gonell, A.M.P. Botas, C.D.S. Brites, P. Amoros, L.D. Carlos, B. Julian-Lopez, R.A.S. Ferreira, Aggregation-induced heterogeneities in the emission of upconverting nanoparticles at the submicron scale unfolded by hyperspectral microscopy. Nanoscale. Adv. 1(7), 2537–2545 (2019)

    Article  ADS  Google Scholar 

  4. T. Wei, B. Jia, L. Shen, C. Zhao, L. Wu, B. Zhang, X. Tao, S. Wu, Y. Liang, Reversible upconversion modulation in new photochromic SrBi2Nb2O9 based ceramics for optical storage and anti-counterfeiting applications. J. Eur. Ceram. Soc. 40(12), 4153–4163 (2020)

    Article  Google Scholar 

  5. B. Chen, F. Wang, Combating concentration quenching in upconversion nanoparticles. Acc. Chem. Res. 53(2), 358–367 (2020)

    Article  Google Scholar 

  6. D.M. Wu, A. Garcia-Etxarri, A. Salleo, J.A. Dionne, Plasmon-enhanced upconversion. J. Phys. Chem. Lett. 5(22), 4020–4031 (2014)

    Article  Google Scholar 

  7. S. Han, R. Deng, X. Xie, X. Liu, Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew. Chem. Int. Edit. 53(44), 11702–11715 (2014)

    Article  Google Scholar 

  8. G. Chen, J. Damasco, H. Qiu, W. Shao, T.Y. Ohulchanskyy, R.R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, H. Agren, P.N. Prasad, Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal. Nano. Lett. 15(11), 7400–7407 (2015)

    Article  ADS  Google Scholar 

  9. T. Zhou, R. Lun, Y. Li, T. Li, Y. Zhao, M. Liu, X. Lai, J. Bi, D. Gao, (2019) Yb3+, Tm3+ co-doped beta-NaY1-xGdxF4 (0<= x<= 1.00) microcrystals: Hydrothermal synthesis, evolution of microstructures and upconversion luminescence properties. J. Lumin. 211, 363–374

  10. C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, H. Zhang, Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles. Nanoscale 5(17), 8084–8089 (2013)

    Article  ADS  Google Scholar 

  11. C. Liu, H. Wang, X. Zhang, D. Chen, Morphology and phase-controlled synthesis of monodisperse lanthanide-doped NaGdF4 nanocrystals with multicolor photoluminescence. J. Mater. Chem. A. 19(4), 489–496 (2009)

    Article  Google Scholar 

  12. F. Wang, R. Deng, X. Liu, Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes. Nat. Protoc. 9(7), 1634–1644 (2014)

    Article  Google Scholar 

  13. G.Y. Lee, K. Jung, H.S. Jang, J. Kyhm, I.K. Han, B. Park, H. Ju, S.J. Kwon, H. Ko, Upconversion luminescence enhancement in plasmonic architecture with random assembly of metal nanodomes. Nanoscale 8(4), 2071–2080 (2016)

    Article  ADS  Google Scholar 

  14. S.L. Kleinman, B. Sharma, M.G. Blaber, A.I. Henry, N. Valley, R.G. Freeman, M.J. Natan, G.C. Schatz, R.P. Van Duyne, Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced raman excitation spectroscopy. J. Am. Chem. Soc. 135(1), 301–308 (2013)

    Article  Google Scholar 

  15. Y. Fu, J. Zhang, J.R. Lakowicz, Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods. J. Am. Chem. Soc. 132(16), 5540 (2010)

    Article  Google Scholar 

  16. J.H. Lin, H.Y. Liou, C.D. Wang, C.Y. Tseng, C.T. Lee, C.C. Ting, H.C. Kan, C.C. Hsu, Giant enhancement of upconversion fluorescence of NaYF4:Yb3+, Tm3+ nanocrystals with resonant waveguide grating substrate. ACS Photonics 2(4), 530–536 (2015)

    Article  Google Scholar 

  17. L. Zong, The controlled fabrication of upconverting hollow structures, enhanced effect on photoluminescence and applications. Chinese. Sci. Bull. 64(34), 3594–3606 (2019)

    Google Scholar 

  18. J. Shen, Z. Li, R. Cheng, Q. Luo, Y. Luo, Y. Chen, X. Chen, Z. Sun, S. Huang, Eu3+-doped NaGdF4 nanocrystal down-converting layer for efficient dye-sensitized solar cells. ACS. Appl. Matel Inter. 6(20), 17454–17462 (2014)

    Article  Google Scholar 

  19. H. Zong, X. Mu, M. Sun, Physical principle and advances in plasmon-enhanced upconversion luminescence. Appl. Mater. Today. 15, 43–57 (2019)

    Article  Google Scholar 

  20. C. Gong, W. Liu, N. He, H. Dong, Y. Jin, S. He, Upconversion enhancement by a dual-resonance all-dielectric metasurface. Nanoscale 11(4), 1856–1862 (2019)

    Article  Google Scholar 

  21. Z. Jia, K. Zheng, D. Zhang, D. Zhao, W. Qin, Upconversion emission from Yb3+ and Tm3+ codoped NaYF4 thin film prepared by thermal evaporation. J. Nanosci. Nanotechnol. 11(11), 9690–9692 (2011)

    Article  Google Scholar 

  22. F. Zhang, G.B. Braun, Y. Shi, Y. Zhang, X. Sun, N.O. Reich, D. Zhao, G. Stucky, Fabrication of Ag@SiO2@Y2O3: Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles. J. Am. Chem. Soc. 132(9), 2850 (2010)

    Article  Google Scholar 

  23. M. Saboktakin, X. Ye, S.J. Oh, S.H. Hong, A.T. Fafarman, U.K. Chettiar, N. Engheta, C.B. Murray, C.R. Kagan, Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation. ACS Nano 6(10), 8758–8766 (2012)

    Article  Google Scholar 

  24. W.P. Guo, R. Mishra, C.W. Cheng, B.H. Wu, L.J. Chen, M.T. Lin, S. Gwo, Titanium nitride epitaxial films as a plasmonic material platform: alternative to gold. ACS Photonics 6(8), 1848–1854 (2019)

    Article  Google Scholar 

  25. C. Mao, K. Min, K. Bae, S. Cho, T. Xu, H. Jeon, W. Park, Enhanced upconversion luminescence by two-dimensional photonic crystal structure. ACS Photonics 6(8), 1882–1888 (2019)

    Article  Google Scholar 

  26. Q. Luo, Y. Chen, Z. Li, F. Zhu, X. Chen, Z. Sun, Y. Wei, H. Guo, Z.B. Wang, S. Huang, Large enhancements of NaYF4:Yb/Er/Gd nanorod upconversion emissions via coupling with localized surface plasmon of Au film. Nanotechnol. 25(18), 185401 (2014)

    Article  ADS  Google Scholar 

  27. J.P. Guerrero-Jimenez, V.H.R. Arellano, I. Zarazua, T. Lopez-Luke, R. Doddoji, A. Cerdan-Pasaran, Increase the quantum dots sensitized TiO2 solar cell efficiency adding n%Yb3+-1%Er3+ doped NaYF4: submicrometer-sized rods. IEEE J. Photovolt. 10(3), 785–794 (2020)

    Article  Google Scholar 

  28. S. Ahmad, G.V. Prakash, R. Nagarajan, Hexagonally ordered KLaF4 host: phase-controlled synthesis and luminescence studies. Inorg. Chem. 51(23), 12748–12754 (2012)

    Article  Google Scholar 

  29. J.F. Suyver, J. Grimm, M.K. Van Veen, D. Biner, K.W. Krämer, H.U. Güdel, Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+. J. Lumin. 117(1), 1–12 (2006)

    Article  Google Scholar 

  30. R. Liu, D. Tu, Y. Liu, H. Zhu, R. Li, W. Zheng, E. Ma, X. Chen, Controlled synthesis and optical spectroscopy of lanthanide-doped KLaF4 nanocrystals. Nanoscale 4(15), 4485–4491 (2012)

    Article  ADS  Google Scholar 

  31. H. Zhou, X. Wang, Y. Lai, S. Cheng, Q. Zheng, J. Yu, Upconversion improvement in KLaF4:Yb3+/Er3+ nanoparticles by doping Al3+ ions. Appl. Phys. A. 123(10), 301–306 (2017)

    Article  ADS  Google Scholar 

  32. S.A. Maier, Plasmonics Fundamentals and Applications (Springer, Berlin, 2007).

    Book  Google Scholar 

  33. L. Brus, Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90, 2555–2560 (1986)

    Article  Google Scholar 

  34. T. Takagahara, Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots. Phys. Rev. B. 47(8), 4569–4584 (1993)

    Article  ADS  Google Scholar 

  35. L.A. Sweatlock, S.A. Maier, H.A. Atwater, Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles. Phys. Rev. B. 71, 235408 (2005)

    Article  ADS  Google Scholar 

  36. R. Praveena, V.S. Sameera, Md.A. Mohiddon, M.G. Krishna, Surface plasmon resonance, photoluminescence and surface enhanced raman scattering behaviour of Ag/ZnO, ZnO/Ag and ZnO/Ag/ZnO thin films. Phys. B 555, 118–124 (2019)

    Article  ADS  Google Scholar 

  37. G. Lin, M. Lewandowska, Plasmon-enhanced fluorescence provided by silver nanoprisms for sensitive detection of sulfide. Sens. Actuators B Chem. 292, 241–246 (2019)

    Article  Google Scholar 

  38. N. Yin, S. Zhao, P. Li, L. Liu, One-pot synthesis of Ag nanoparticle/Ag-doped SiO2 composite film and their enhancement effect for CdSe QDs. Funct. Mater. Lett. 11(5), 1950008 (2018)

    Article  ADS  Google Scholar 

  39. Y. Zhang, H. Sun, S. Zhang, S. Li, X. Wang, X. Zhang, T. Liu, Z. Guo, Enhancing luminescence in all-inorganic perovskite surface plasmon light-emitting diode by incorporating Au-Ag alloy nanoparticle. Opt. Mater. 89, 563–567 (2019)

    Article  ADS  Google Scholar 

  40. A.A.I. Khalil, W.O. Younis, M.A. Gandol, A comparative study of highly-ionized Al plasma based on dual pulse laser-induced breakdown spectroscopy. Indian. J. Phys. 91(3), 327–336 (2017)

    Article  ADS  Google Scholar 

  41. S. Thirugnanasambandan, R. Manogaran, R.T. Anbalagan, N. Vengidusamy, S. Arumainathan, Plasmon induced photoluminescent emission from PED Ag-In alloy. Res. Chem. Intermediat. 46(7), 3383–3396 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Nature Sciences Foundation of China (No. 62074036) and the Nature Sciences Foundation of Fujian Province (Grant No. 2016J01298 and 2019J01218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifang Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Wang, C., Lai, Y. et al. Plasmon-enhanced upconversion luminescence of the composite films through tunable ZnO spacer. Appl. Phys. A 127, 315 (2021). https://doi.org/10.1007/s00339-021-04462-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04462-4

Keywords

Navigation